-
未来信息化战争以军事电子技术和信息技术为基础,是交战双方在信息领域的全面对抗,信息变革的浪潮强烈冲击着传统的战争观念,信息化条件下的联合作战已经成为军事发展的必然趋势[1-4]。未来打赢战争需要不同军兵种之间协同作战,为实现整体作战能力和武器装备的作战效能大幅度提升,要求各种军用装备如预警侦察、探测识别、通信指挥、导航定位等电磁辐射源的功率越来越大,数量成倍增加,再加上高功率微波、超宽带电磁脉冲等定向能武器和电磁脉冲弹、强电磁干扰机的出现,使得现代战场上用频装备高度密集,战场环境日益恶化,武器系统在电磁空间的安全性、可靠性受到严重威胁,装备的电磁环境适应性问题越来越突出[5-8]。
雷达是利用无线电对目标体进行探测和测距的电磁传感器,相当于人类的“千里眼”,广泛应用于军用及民用领域[9-10]。雷达装备作为常用的用频装备,担负着战场侦察、目标监视、火炮瞄准等重要任务,在战场上发挥着举足轻重的作用[11-12]。当前对于用频装备受电磁辐射干扰的研究主要侧重于带内多频干扰阻塞效应规律与效应评估模型的建立[13],文献[14]指出干扰频率位于雷达工作频带内的单频信号可对雷达造成虚警干扰,但未对虚警干扰的目标特征进行分析;文献[15]认为单频干扰可使调频连续波雷达显示界面产生伪信号干扰带。但上述文献均未涉及雷达带外单频电磁辐射伪信号干扰。
Ku波段连续波雷达天线物理尺寸较小,具有良好的便携和测距功能,广泛应用于近程跟踪及制导[16]。本文在上述背景的基础上,以某型Ku波段步进频连续波测距雷达为实验对象,开展单频电磁辐射伪信号干扰效应实验,发现在雷达工作频段的带内与带外均存在伪信号干扰现象。确定了伪信号电平随干扰场强的变化规律,以伪信号电平达到6 dBmV作为敏感判据,测试得到伪信号干扰敏感频带,阐明了带内外单频电磁辐射对雷达的伪信号干扰效应机理和成像机制,为开展雷达装备复杂电磁环境下的伪信号干扰效应评估及防护奠定了基础。
-
在步进频连续波测距雷达的全频段电磁辐射阻塞干扰效应实验中发现,单频连续波电磁辐射不仅可使雷达装备被阻塞而产生峰值电平压缩的现象,在雷达的某些敏感频段,还可在雷达显示界面产生两种不同形态的伪信号从而造成雷达装备误判,其图像如图1所示。依据伪信号形态特征,本文将这两种伪信号分别命名为“脉冲”型伪信号和“冲激”型伪信号。
步进频连续波测距雷达的工作频段较高,工作带宽较大,通常至少经过一次以上的变频处理,为保证伪信号分析具有普适性,本文以二次变频的零中频接收机为例,步进频雷达原理结构框图如图2所示。由频率综合器产生一本振定频信号和二本振步进频信号,经混频滤波放大后由发射天线发出;从目标返回的回波信号被接收天线接收后,经滤波放大,先与一本振定频信号混频,将接收信号频率下变频至中频频率,经带通滤波器选频,再次放大后与二本振步进频信号混频,之后经低通滤波器滤波后,进一步放大含有时延信息的低频回波信号,经后期信号采集处理后,可在雷达上观测到含有有用目标距离信息的尖峰信号,实现雷达测距功能。
依据图2,以单频连续波信号为干扰源,基于步进频连续波测距雷达接收机电路信号处理,采用复信号的形式开展分析,进一步探讨真实有用目标、“脉冲”型伪信号和“冲激”型伪信号的成像机理。
-
由图2可设发射天线发出的信号为:
$$ \begin{split} S(t) =& \sum\limits_{i = - {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}}^{{N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} {E_{s_i}} \Bigg\{{\rm{rect}}\frac{{t - {T_R}/2 - \left( {i + N{\rm{/}}2} \right){T_R}}}{{{T_R}}} \times\Bigg.\\ &\Bigg. \exp \left[ {{\rm{j}}\left( {2{\text{π}} \left( {{f_0} + i\Delta f} \right)t + {\varphi _i}} \right)} \right] \Bigg\} \end{split} $$ (1) 式中,
$ N $ 为步进频阶梯数;${E_{s_i}}$ 为各步进阶梯内信号场强幅值;$ {T_R} $ 为单个步进阶梯跳频时间;$ {f_0} $ 为雷达工作频段的中心频率;$ \Delta f $ 为步进阶梯;$ {\varphi _i} $ 为各步进阶梯信号初相位。设雷达工作频段的带宽为$ 2{f_H} $ ,则$ N = {{2{f_H}} \mathord{\left/ {\vphantom {{2{f_H}} {\Delta f}}} \right. } {\Delta f}} $ 。设
$ {f_a} $ 为雷达接收机的一本振频率,则雷达的一本振信号可表示为:$$ {u_a}(t) = 2\exp ({\text{j}}2{\text π} {f_a}t) $$ (2) 设
$ {f_b} $ 为雷达接收机的二本振中心频率,则雷达的二本振步进频信号可表示为:$$ \begin{split} {u_{_b}}(t) =& 2\sum\limits_{i = - {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}}^{{N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \Bigg\{{\rm{rect}}\left[ {\frac{{t - {T_R}/2 - \left( {i + N/2} \right){T_R}}}{{{T_R}}}} \right] \times\Bigg.\\& \Bigg.\exp \left[ {{\rm{j}}\left( {2{\text{π}} \left( {{f_b} + i\Delta f} \right)t + {\varphi _i}} \right)} \right]\Bigg\} \end{split} $$ (3) 可得:
$$ {f_0} = {f_a} + {f_b} $$ (4) 距离为R的真实目标回波信号被雷达接收后可表示为:
$$ \begin{split} {u_c}(t) =& \sum\limits_{i = - {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}}^{{N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} {A_{c_i}}{E_{c_i}}\Bigg\{{\rm{rect}}\left[ {\frac{{t - {T_R}/2 - \left( {i + N/2} \right){T_R} - 2R{\rm{/}}c}}{{{T_R}}}} \right] \times\Bigg.\\& \Bigg.\exp \left[ {{\rm{j}}\left( {2{\text{π}}\left( {{f_0} + i\Delta f} \right)\left( {t - 2R/c} \right) + {\varphi _i}} \right)} \right]\Bigg\} \end{split} $$ (5) 式中,c为光速;
$ {A_{c_i}} $ 为第i个步进阶梯信号场路耦合到雷达接收机非线性器件前的等效传递函数;$ {E_{c_i}} $ 为真实目标回波信号在雷达接收天线处的场强幅值。真实目标回波信号与雷达一本振信号混频后,得到:
$$ \begin{split} \sum\limits_{i = - {N/2}}^{{N/2}}& {A_{c_i}}{E_{c_i}}\Bigg\{{\rm{rect}}\left[ {\frac{{t - {T_R}/2 - \left( {i + N/2} \right){T_R} - 2R/c}}{{{T_R}}}} \right] \times\Bigg.\\& \Bigg.\exp \left[ {{\rm{j}}\left( {2{\text{π}} \left( {{f_b} + i\Delta f} \right)\left( {t - 2R/c} \right) + {\varphi _i}} \right)} \right]\Bigg\} \end{split} $$ (6) 与雷达二本振信号混频后:
$$ \begin{split} \sum\limits_{i = - {N/2}}^{{N/2}}& {A_{c_i}}{E_{c_i}}\Bigg\{{\rm{rect}}\left[ {\frac{{t - {T_R}/2 - \left( {i + N/2} \right){T_R} - 2R/c}}{{{T_R}}}} \right] \times\Bigg.\\& \Bigg.\exp \left[ {{\rm{j}}\left( {2{\text{π}}\left( {{f_b} + i\Delta f} \right)\left( { - 2R/c} \right)} \right)} \right]\Bigg\} \end{split} $$ (7) 设步进频测距雷达在每个步进阶梯内的采样时刻为
$t = {t_0} + (i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}){T_R},\;t = - {N \mathord{\left/ {\vphantom {N 2}} \right. } 2},\;- {N \mathord{\left/ {\vphantom {N 2}} \right. } 2} + 1,\;- {N \mathord{\left/ {\vphantom {N 2}} \right. } 2} + 2, \cdot \cdot \cdot , {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}$ ,将式(7)采样后,得到采样序列:$$ {u_{i_c}}(i) = {A_{c_i}}{E_{c_i}}\exp \left[ {{\text{j}}2{\text π} {f_b}\left( { - {{2R} \mathord{\left/ {\vphantom {{2R} c}} \right. } c}} \right)} \right]\exp \left[ {{\text{j}}2{\text π} i\Delta f\left( { - {{2R} \mathord{\left/ {\vphantom {{2R} c}} \right. } c}} \right)} \right] $$ (8) 式中,指数项
$ \exp \left[ {{\text{j}}2{\text π} {f_b}\left( { - {{2R} \mathord{\left/ {\vphantom {{2R} c}} \right. } c}} \right)} \right] $ 为常数,仅对有用信号电平幅值起作用;指数项$ \exp \left[ {{\text{j}}2{\text π} i\Delta f\left( { - {{2R} \mathord{\left/ {\vphantom {{2R} c}} \right. } c}} \right)} \right] $ 经快速逆傅里叶变换与门限判决可得到真实目标回波距离信息R。为便于分析,将式(8)归一化,可得到:$$ u(i) = \exp \left[ {{{j2{\text π} \left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right)l} \mathord{\left/ {\vphantom {{j2\pi \left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right)l} N}} \right. } N}} \right] $$ (9) 式中,
$l = {\rm{Round}}\left( {{{2RN\Delta f} \mathord{\left/ {\vphantom {{2RN\Delta f} c}} \right. } c}} \right)$ ;${\rm{Round}}\left( x \right)$ 为取整运算。对式(9)进行IFFT运算并求模:$$ \left| {\mathop u\limits^ - \left( l \right)} \right| = \left\| {\frac{{\sin \left( {k - l} \right)}}{{\sin \left( {\frac{{k - l}}{N}} \right)}}} \right\|\qquad k = 0,1,2, \cdot \cdot \cdot ,N - 1 $$ (10) 当k=l时,式(10)可取最大值,经过门限判决即可通过k值算出真实目标回波距离:
$$ R = \frac{{ck}}{{2N\Delta f}} $$ (11) -
设干扰频率
$ {f_1} $ 靠近于雷达工作频段的单频连续波干扰信号为:$$ {S_1}(t) = {E_1}\exp \left[ {{\text{j}}\left( {2{\text π} {f_1}t + {\theta _1}} \right)} \right] $$ (12) 式中,
$ {E_1} $ 为干扰信号在接收天线处的场强幅值;$ {\theta _1} $ 为干扰信号初相位。设雷达接收机非线性器件前接收到的干扰信号为:
$$ {u_1}(t) = {A_1}{E_1}\exp \left[ {{\text{j}}\left( {2{\text π} {f_1}t + {\theta _1}} \right)} \right] $$ (13) 式中,
$ {A_1} $ 为干扰信号场路耦合到雷达接收机非线性器件前的等效传递函数。干扰信号与雷达一本振信号混频后,得到:
$$ {A_1}{E_1}\exp \left[ {{\text{j}}\left( {2{\text π} \left( {{f_1} - {f_a}} \right)t + {\theta _1}} \right)} \right] $$ (14) 与雷达二本振信号混频后,得到:
$$ \begin{split} {A_1}{E_1}&\sum\limits_{i = - {N/2}}^{{N/2}} \Bigg\{{\rm{rect}}\left( {\frac{{t - {T_R}/2 - \left( {i + N/2} \right){T_R}}}{{{T_R}}}} \right) \times\Bigg.\\& \Bigg.\exp \left[ {{\rm{j}}\left( {2{\text{π}}\left( {{f_1} - {f_a} - {f_b} - i\Delta f} \right)t + \left( {{\theta _1} - {\varphi _i}} \right)} \right)} \right]\Bigg\} \end{split} $$ (15) 将式(15)采样,可得采样序列为:
$$ \begin{split} &{u_{i1}}(i) = {A_1}{E_1}\exp \left[ {{\text{j}}\left( {2{\text π} \left( {{f_1} - {f_0} - {f_H}} \right){t_0} + \left( {{\theta _1} - {\varphi _i}} \right)} \right)} \right] \times \\ &\quad \; \exp \left[ {{\text{j}}2{\text π} \left( {\left( {{f_1} - {f_0} - {f_H}} \right){T_R} - \Delta f{t_0}} \right)\left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right)} \right] \times \\ &\qquad\qquad\quad \exp \left[ { - {\text{j}}2{\text π} \Delta f{T_R}{{\left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right)}^2}} \right] \\ \end{split} $$ (16) 式中,指数项
$\exp \left[ {{\text{j}}\left( {2{\text π} \left( {{f_1} - {f_0} - {f_H}} \right){t_0} + \left( {{\theta _1} - {\varphi _i}} \right)} \right)} \right]$ 里$ {\theta _1} $ 、$ {\varphi _i} $ 均为随机变量,但因不含有i的一次相位,故该指数项仅对伪信号的绝对电平值产生影响,且程度有限;第二个指数项$\exp \left[ {\text{j}}2{\text π} \left( \left( {{f_1} - {f_0} - {f_H}} \right)\right.\right. \left.\left.{T_R} - \Delta f{t_0} \right)\left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right) \right]$ 里含有i的一次相位,故该项决定伪信号出现的位置,若干扰信号频率确定,则式中除$ {t_0} $ 外其他项均为定值,会产生固定位置的伪信号,但雷达装备每次测距时,$ {t_0} $ 值为随机值,使得每次伪信号中心位置产生随机距离的偏移;第三个指数项$\exp \left[ { - {\text{j}}2{\text π} \Delta f{T_R}{{\left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right)}^2}} \right]$ 里因含有i的二次相位,使得伪信号能量分散,波形展宽,最终呈现为“脉冲”型伪信号,若不改变步进阶梯和跳频时间,则伪信号波形不会发生变化。为探明“脉冲”型伪信号的距离,忽略掉式(16)中第三个指数项的影响,将式(16)归一化,得到:
$$ u(i) = \exp \left[ {{{j2{\text π} \left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right)m} \mathord{\left/ {\vphantom {{j2{\text π} \left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right)m} N}} \right. } N}} \right] $$ (17) 式中,
$ m = {\rm{Round}}\left[ {N\left( {\left( {{f_1} - {f_0} - {f_H}} \right){T_R} - \Delta f{t_0}} \right)} \right] $ 。同理得到“脉冲”型伪信号距离为:$$ {R_1} = \frac{{\left[ {\left( {{f_1} - {f_0} - {f_H}} \right){T_R} - \Delta f{t_0}} \right]c}}{{2\Delta f}} $$ (18) -
为与“脉冲”型伪信号区分,设干扰频率
$ {f_2} $ 靠近于雷达一本振频率$ {f_a} $ 的单频连续波干扰信号为:$$ {S_2}(t) = {E_2}\exp \left[ {{\text{j}}\left( {2{\text π} {f_2}t + {\theta _2}} \right)} \right] $$ (19) 式中,
$ {E_2} $ 为干扰信号在接收天线处的场强幅值;$ {\theta _2} $ 为干扰信号初相位。设雷达接收机非线性器件前接收到的干扰信号为:
$$ {u_2}(t) = {A_2}{E_2}\exp \left[ {{\text{j}}\left( {2{\text π} {f_2}t + {\theta _2}} \right)} \right] $$ (20) 式中,
$ {A_2} $ 为干扰信号场路耦合到雷达接收机非线性器件前的等效传递函数。干扰信号与雷达有用回波信号交调,即式(5)与式(20)混频,得到交调信号:
$$ {\begin{split} \dfrac{1}{2}\displaystyle\sum\limits_{i = - {N /2}}^{{N/2}}& {A_{c_i}}{A_2}{E_{c_i}}{E_2}\Bigg\{{\rm{rect}}\left[ {\frac{{t - {T_R}/2 - \left( {i + N/2} \right){T_R} - 2R/c}}{{{T_R}}}} \right] \times\Bigg.\\&\Bigg. \exp \left[ {{\rm{j}}( {2{\text{π}}( {( {{f_0} + i\Delta f - {f_2}} )t - ( {{f_0} + i\Delta f} )\frac{{2R}}{c}} ) + {\varphi _i} - {\theta _2}} )} \right] \Bigg\} \end{split}}$$ (21) 当干扰频率
$ {f_2} $ 足够靠近于雷达一本振频率$ {f_a} $ ,则上述交调信号不会被雷达接收机一本振后的带通滤波器滤除,经放大后可直接与雷达二本振信号混频,得到:$$ \begin{split} \dfrac{1}{2}\displaystyle\sum\limits_{i = - {N /2}}^{{N/2}} &{A_{c_i}}{A_2}{E_{c_i}}{E_2}\Bigg\{{\rm{rect}}\left[ {\frac{{t - {T_R}/2 - \left( {i + N/2} \right){T_R} - 2R/c}}{{{T_R}}}} \right] \times\Bigg.\\& \Bigg.\exp \left[ {{\rm{j}}( {2{\text{π}}( {( {{f_a} - {f_2}} )t - ( {{f_0} + i\Delta f} )\frac{{2R}}{c}} ) - {\theta _2}} )} \right]\Bigg\}\\[-20pt] \end{split} $$ (22) 将式(22)采样,可将采样序列化简为:
$${ \begin{split} &{u_{i2}}(i) = \frac{1}{2}{A_{c_i}}{A_2}{E_{c_i}}{E_2}\exp \left[ {{\text{j}}\left( {2{\text π} \left( {\left( {{f_a} - {f_2}} \right){t_0} - \left( {{f_0} - {f_H}} \right)\frac{{2R}}{c}} \right) - {\theta _2}} \right)} \right] \times \\ &\qquad\qquad \exp \left[ {{\text{j}}2{\text π} \left( {\left( {{f_a} - {f_2}} \right){T_R} - \Delta f\frac{{2R}}{c}} \right)\left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right)} \right] \\[-20pt] \end{split}} $$ (23) 由式(23)可知,指数项
$\exp \bigg[ {\text{j}}\bigg( 2{\text π} \bigg( {\left( {{f_a} - {f_2}} \right){t_0} -} { \left( {{f_0} - {f_H}} \right)\dfrac{{2R}}{c}} \bigg) - {\theta _2} \bigg) \bigg]$ 因不含i的相位,故其值仅与伪信号绝对电平相关;指数项$\exp \bigg[ {\text{j}}2{\text π} \bigg( {\left( {{f_a} - {f_2}} \right){T_R} - \Delta f\dfrac{{2R}}{c}} \bigg) \left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right) \bigg]$ 因含有i的一次相位,若干扰信号频率与有用目标距离固定,则该伪信号中心位置为一定值。因式(23)不含有i的二次相位,故该干扰信号产生的伪信号能量集中,波形不会分散,在雷达显示界面会产生“冲激”型伪信号。为探明“冲激”型伪信号的距离,将式(23)归一化,可得:$$ u(i) = \exp \left[ {{{j2{\text π} \left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right)n} \mathord{\left/ {\vphantom {{j2{\text π} \left( {i + {N \mathord{\left/ {\vphantom {N 2}} \right. } 2}} \right)n} N}} \right. } N}} \right] $$ (24) 式中,
$ n = {\rm{Round}}\left[ {N\left( {\left( {{f_a} - {f_2}} \right){T_R} - \Delta f\dfrac{{2R}}{c}} \right)} \right] $ ,同理得到“冲激”型伪信号距离为:$$ {R_2} = \frac{{\left( {{f_a} - {f_2}} \right){T_R}c}}{{2\Delta f}} + R $$ (25) 由式(25)可知,当干扰信号频率确定,“冲激”型伪信号的距离仅与有用目标的回波距离相关。
-
为进一步理解上述两类伪信号成像过程,假设接收天线分别接收到两个不同频率的单频电磁辐射干扰信号,设接近于雷达工作频率的干扰信号频率为
$ {f_1} $ ,接近于雷达一本振频率的干扰信号频率为$ {f_2} $ ,仅考虑一二阶分量,忽略高阶分量的影响,则干扰信号进入受试雷达各结构后输出信号各分量的频率如表1所示。设雷达工作扫频信号为$ {F_0} $ ,$ {f_{io}} = {f_0} + i\Delta f,\;i = - \dfrac{N}{2}, - \dfrac{N}{2} + 1, \cdot \cdot \cdot ,\dfrac{N}{2} - 1,\dfrac{N}{2} $ ,则${F_0} = \left\{ {{f_{ - \frac{N}{2}0}},{f_{\left( { - \frac{N}{2} + 1} \right)0}}, \cdot \cdot \cdot ,{f_{\left( {\frac{N}{2} - 1} \right)0}},{f_{\frac{N}{2}0}}} \right\}$ ;设雷达二本振步进频信号为$ {F_b} $ ,${f_{ib}} = {f_b} + i\Delta f,i = - \dfrac{N}{2}, - \dfrac{N}{2} + 1, \cdot \cdot \cdot , \dfrac{N}{2} - 1, \dfrac{N}{2}$ ,则${F_b} = \left\{ {{f_{ - \frac{N}{2}b}},{f_{\left( { - \frac{N}{2} + 1} \right)b}}, \cdot \cdot \cdot ,{f_{\left( {\frac{N}{2} - 1} \right)b}},{f_{\frac{N}{2}b}}} \right\}$ ,${F_0} = {F_b} + {f_a}$ 。表 1 单频干扰信号进入步进频雷达各结构后输出分量频率
结构 带内干扰 带外干扰 天线接收 $ F_{0} $,$ f_{1} $ $ F_{0} $,$ f_{2} $ 一级放大 $ F_{0} $,$ f_{1} $,$ F_{0} \pm f_{1} $ $ F_{0} $,$ f_{2} $,$ F_{0} \pm f_{2} $ 一级混频 ($ f_{a} $) $ F_{0} $,$ f_{1} $,$ F_{0} \pm f_{1} $,$ F_{0} \pm f_{a} $,$ f_{1} \pm f_{a} $,$ F_{0} \pm f_{1} \pm f_{a} $ $ F_{0} $,$ f_{2} $,$ F_{0} \pm f_{2} $,$ F_{0} \pm f_{a} $,$ f_{2} \pm f_{a} $,$ F_{0} \pm f_{2} \pm f_{a} $ 带通滤波($ f_{b} \pm f_{H} $) $ F_{0}-f_{a} $,$ f_{1}-f_{a} $ $ F_{0}-f_{a} $,$ F_{0}-f_{2} $ 二级混频 ($ F_{b} $) $ F_{0}-f_{a} $,$ f_{1}-f_{a} $,$ F_{0}-f_{a} \pm F_{b} $,$ f_{1}-f_{a} \pm F_{b} $ $ F_{0}-f_{a} $,$ F_{0}-f_{2} $,$ F_{0}-f_{a} \pm F_{b} $,$ F_{0}-f_{2} \pm F_{b} $
低通(窄带)滤波$ F_{0}-f_{a}-F_{b} $(真实目标回波信号),
$ f_{1}-f_{a}-F_{b} $(一阶“脉冲”型伪信号)$ F_{0}-f_{a}-F_{b} $(真实目标回波信号),
$ F_{0}-f_{2}-F_{b} $(二阶交调“冲激”型伪信号)由表1和以上理论分析可知,步进频雷达装备在单频连续波干扰下,形成“脉冲”型伪信号的本质原因为干扰频率处于雷达工作频段的干扰信号难以被雷达射频前端滤除,直接对后端的信号处理造成了影响;形成“冲激”型伪信号的本质原因为干扰频率接近于雷达一本振频率的干扰信号与有用信号交调产生的交调信号,难以被一本振后的中频带通滤波器滤除,与雷达二本振步进频信号混频后,产生的低频信号又难以被二本振后的低通滤波器滤除,最终对雷达后端的信号处理造成了影响。
-
选用某型Ku波段步进频连续波测距雷达,雷达工作频率为
$ {f_0} \pm 0.1 $ GHz,跳频时间为0.05 ms,步进频阶梯为10 kHz,最大探测距离可达5000 m,雷达发射天线与接收天线分别放置,以保证收发支路的物理隔离度。设置距离约8.3 m的喇叭天线作为雷达探测目标,因雷达在实际工作过程中需探测的目标距离大多数情况下均会远于实验中所设置距离,近距离的目标回波强度较强,为使实验结果具有普适性,在雷达发射天线的连接端口处增加不同程度的衰减器,用以模拟距离较远处的探测目标回波强度。为避免辐照法实验中因干扰天线的存在而产生的影响并保证实验良好的重复性与稳定性,同时弥补干扰源最大功率不足的缺点,参照GJB8848-2016标准[17],采用等效的差模注入方法代替辐照法开展测试。单频干扰信号通过监测注入模块直接注入雷达接收端口,频谱分析仪监测单频电磁辐射注入功率值,而后换算为单频电磁辐射在雷达接收天线处的干扰场强值,通过调整单频干扰源的频率、信号强度,研究单频电磁辐射对受试雷达的伪信号干扰特征与规律,效应实验平台如图3所示。 -
在图3实验平台的基础上,开展连续波注入实验,对受试雷达装备进行全频段扫描,根据实验观察,若干扰频率位于雷达工作频段内,即
$ {f_0} $ GHz附近,则雷达显示界面会产生“脉冲”型伪信号,每次测试伪信号距离随机;若干扰频率位于雷达工作频段外,在$ \left( {{f_0} - 0.6} \right) $ GHz附近,则雷达显示界面会产生“冲激”型伪信号,每次测试伪信号距离固定。伪信号形态符合前文理论分析,为进一步探究伪信号干扰成因,设定干扰频率分别为$ {f_0} $ GHz和$ \left( {{f_0} - 0.6} \right) $ GHz,雷达发射端口的衰减器分别选用20、30、40 dB,改变单频干扰源信号强度,得到两类伪信号电平随单频干扰场强的变化曲线如图4和图5所示。1)在有用信号强度不同的条件下,“脉冲”型伪信号电平值随干扰场强的总体变化趋势基本一致:当干扰场强较低时,伪信号电平值随干扰场强的增加而近似线性增长;当干扰场强继续增大,伪信号电平值达到最大值后基本不随干扰场强的增大而改变。“脉冲”型伪信号电平最大值为16 dBmV左右。
2)“冲激”型伪信号电平值与有用信号强度成正比,当干扰场强较低时,伪信号电平值随干扰场强的增加而近似线性增长;当干扰场强继续增大,伪信号电平达到最大值之后逐渐降低,近似于线性下降。“冲激”型伪信号电平最大值为40 dBmV左右,若真实目标距离较近,有用信号强度更强,则“冲激”型伪信号电平的最大值还可能继续增大。带外单频伪信号干扰在一定的场强范围内远强于带内单频伪信号干扰。
-
由式(15)可知,“脉冲”型伪信号电平值仅被干扰信号场强幅值决定;由式(22)可知,“冲激”型伪信号电平值被回波信号场强幅值和干扰信号场强幅值共同决定。
当外界干扰信号的干扰场强较低时,雷达工作于线性区,真实回波信号和干扰信号均未被压制,故在真实回波信号强度不变、干扰信号强度增大的条件下,“脉冲”型伪信号和“冲激”型伪信号电平值均随干扰信号强度的增大而线性增大。
当干扰信号足够强使雷达工作于强非线性区时,此时可用矢量法开展分析,其工作机理可用限幅器说明。输入信号可表示为:
$$ \begin{split} & \qquad\qquad{u_r}(t) = {U_j}\cos \left( {2{\text π} {f_j}t} \right) + \displaystyle\sum\limits_{i = - {N/2}}^{{N/2}} {U_{s_i}} \times\\ & \left\{{\rm{rect}}\left[ {\frac{{t - {{{T_R}} \mathord{\left/ {\vphantom {{{T_R}} 2}} \right. } 2} - \left( {i + {N/2}} \right){T_R}}}{{{T_R}}}} \right]\cos \left[ {2{\text π} \left( {{f_0} + i\Delta f} \right)(t - \frac{{2R}}{c})} \right]\right\} \end{split} $$ (26) 式中,
$ {U_{si}} $ 为耦合至接收机的有用信号单个步进阶梯内的电压幅值;$ {U_j} $ 为耦合至接收机的干扰信号电压幅值;$ {f_j} $ 为干扰信号频率。令
$ {u_{r_s}}(t) $ 表示有用信号,$ {u_{r_j}}(t) $ 表示干扰信号,则式(26)可分解为:$$ \begin{split} {u_{r_s}}(t) =& \displaystyle \sum\limits_{i = - N/2}^{N/2} {\left\{ {{U_{{s_i}}}{\rm{rect}}\left[ {\frac{{t - {T_R}/2 - \left( {i + N/2} \right){T_R}}}{{{T_R}}}} \right]} \right.} \times \\& \left. {\cos \left[ {2{\text{π}} \left( {{f_0} + i\Delta f} \right)\left( {t - \frac{{2R}}{c}} \right)} \right]} \right\} \end{split} $$ (27) $$ {u_{r_j}}(t) = {U_j}\cos ( {2{\text π} {f_j}t} ) $$ (28) 接收信号的矢量分析图如图6所示,其中,
${\omega _d}t = 2{\text π} \left( {{f_0} + i\Delta f} \right)\left(t - \dfrac{{2R}}{c}\right) - 2{\text π} {f_j}t$ 。由图6可知,输入信号在接收机电路非线性器件前的输入分量可表示为:
$$ S(t)\cos \left[ {2{\text π} \left( {{f_0} + i\Delta f} \right)\left(t - \frac{{2R}}{c}\right) + \theta } \right] $$ (29) 设雷达系统的限幅电平为
$ {U_x} $ ,当雷达接收机工作于强非线性区时,输入信号电平大于限幅电平,干扰信号幅度远远大于有用信号幅度,即$ {U_j} > > {U_{s_i}} $ ,此时有$ {U_j} \approx S\left( t \right),\;\;\theta \approx 0 $ ,参考文献[14]的推导过程,结合图6与式(15)、式(23)可知,“脉冲”型和“冲激”型伪信号的输出分量分别表示为:$$ {U_x}\cos \left[ {2{\text π} \left( {{f_j} - {f_0} - i\Delta f} \right)t} \right] $$ (30) $$ \frac{{U_x^2{U_{s_i}}}}{{2{U_j}}}\cos \left[ {2{\text π} \left( {{f_j} - {f_a}} \right)t + 2{\text π} \left( {{f_0} + i\Delta f} \right)\frac{{2R}}{c}} \right] $$ (31) 由式(30)和式(31)可得到:当雷达工作于强非线性区时,“脉冲”型伪信号电平值不随干扰信号强度的增大而增大;“冲激”型伪信号电平值随干扰信号强度的增大而线性降低。理论与现象保持一致,证明了第一部分节理论分析的正确性。
-
按照图3构建的单频电磁辐射效应实验平台,设定雷达发射端口的衰减为30 dB,在受试雷达装备未受干扰时,可观测到雷达显示界面中存在因电子噪声而产生的杂波信号,经多次测试,杂波信号的最大绝对电平值均低于0 dBmV,为避免杂波信号的影响,同时在图4和图5中观察到6 dBmV又处于两类伪信号电平随干扰场强增大的线性区,具有较好的稳定性,故本文选择6 dBmV作为伪信号敏感判据,即伪信号绝对电平达到6 dBmV时,认为单频电磁辐射对受试雷达装备造成了伪信号干扰。采用变步长升降法调节射频信号源功率改变电磁辐射干扰场强,使受试雷达处于伪信号临界干扰状态,记录频谱分析仪临界干扰功率值并换算为临界干扰场强值。测得两类伪信号干扰敏感频段,其单频临界干扰场强变化曲线如图7和图8所示。
1)受试步进频雷达装备在敏感频段
$ {f_0} $ GHz±60 MHz会出现“脉冲”型伪信号干扰;在敏感频段$ \left( {{f_0} - 0.6} \right) $ GHz±4 MHz会出现“冲激”型伪信号干扰。带内敏感频段的范围显著大于带外敏感频段。2)带内外敏感频段均呈“U”型曲线,两敏感频段的最敏感点均出现于中心频点处,伪信号临界干扰场强随中心频点频偏的增加而增大。“脉冲”型伪信号最大临界干扰场强与最小临界干扰场强的差值约为20 dB;“冲激”型伪信号最大临界干扰场强与最小临界干扰场强的差值约为40 dB。
Mechanism Analysis of Single-Frequency Pseudo-Signal Interference Effect of Stepper-Frequency Radar
-
摘要: 针对典型雷达装备受到单频电磁辐射时,雷达显示界面形成伪信号从而造成真实目标误判的问题,基于步进频雷达测距工作原理,以某型Ku波段步进频测距雷达为实验对象,开展了单频电磁辐射伪信号干扰效应实验,验证了两类伪信号干扰成像机理分析的正确性。通过实验得到了带内外典型频点的两类伪信号电平值随单频干扰场强的变化曲线,基于接收电路非线性失真分析分别解释了带内外伪信号电平值的变化规律,而后测得了两类伪信号干扰的敏感频段。实验结果表明:带内单频电磁辐射可对步进频雷达装备造成“脉冲”型伪信号干扰,伪信号出现的位置随机;带外单频电磁辐射可对步进频雷达装备造成“冲激”型伪信号干扰,伪信号出现的位置固定;随着单频干扰场强的提高,“脉冲”型伪信号电平值先线性增长,而后保持恒定;“冲激”型伪信号电平值先逐渐增大,达到最大值后逐渐降低。Abstract: In order to improve the electromagnetic protection capability of radar equipment, the two types of pseudo-signal interference imaging mechanism of radar equipment are revealed based on the working principle of stepper-frequency radar ranging for the problem of pseudo-signal formation on the radar display interface when typical radar equipment is subjected to single-frequency electromagnetic radiation, thus causing misjudgment of real targets. With a type of Ku-band step-frequency ranging radar as the test object, a single-frequency electromagnetic radiation pseudo-signal interference effect test was carried out to verify the correctness of the two types of pseudo-signal interference imaging mechanism analysis. The variation curves of the two types of pseudo-signal level values with single-frequency interference field strength at typical frequency points in and out of the band are obtained experimentally, and the variation laws of the pseudo-signal level values in and out of the band are explained respectively based on the nonlinear distortion analysis of the receiver circuit, and then the sensitive frequency bands of the two types of pseudo-signal interference are measured. The test results show that: In-band single-frequency electromagnetic radiation can cause "pulse" type pseudo-signal interference to stepper frequency radar equipment, the location of the pseudo-signal is random; out-of-band single-frequency electromagnetic radiation can cause "impulse" type pseudo-signal interference to stepper frequency radar equipment, the location of the pseudo-signal is fixed; as the single-frequency interference field strength increases, the "pulse" type pseudo-signal level value first increases linearly, and then remains constant, the "impulse" type pseudo-signal level value first gradually increases, reaches the maximum value and then gradually decreases.
-
表 1 单频干扰信号进入步进频雷达各结构后输出分量频率
结构 带内干扰 带外干扰 天线接收 $ F_{0} $ ,$ f_{1} $ $ F_{0} $ ,$ f_{2} $ 一级放大 $ F_{0} $ ,$ f_{1} $ ,$ F_{0} \pm f_{1} $ $ F_{0} $ ,$ f_{2} $ ,$ F_{0} \pm f_{2} $ 一级混频 ( $ f_{a} $ )$ F_{0} $ ,$ f_{1} $ ,$ F_{0} \pm f_{1} $ ,$ F_{0} \pm f_{a} $ ,$ f_{1} \pm f_{a} $ ,$ F_{0} \pm f_{1} \pm f_{a} $ $ F_{0} $ ,$ f_{2} $ ,$ F_{0} \pm f_{2} $ ,$ F_{0} \pm f_{a} $ ,$ f_{2} \pm f_{a} $ ,$ F_{0} \pm f_{2} \pm f_{a} $ 带通滤波( $ f_{b} \pm f_{H} $ )$ F_{0}-f_{a} $ ,$ f_{1}-f_{a} $ $ F_{0}-f_{a} $ ,$ F_{0}-f_{2} $ 二级混频 ( $ F_{b} $ )$ F_{0}-f_{a} $ ,$ f_{1}-f_{a} $ ,$ F_{0}-f_{a} \pm F_{b} $ ,$ f_{1}-f_{a} \pm F_{b} $ $ F_{0}-f_{a} $ ,$ F_{0}-f_{2} $ ,$ F_{0}-f_{a} \pm F_{b} $ ,$ F_{0}-f_{2} \pm F_{b} $
低通(窄带)滤波$ F_{0}-f_{a}-F_{b} $ (真实目标回波信号),$ f_{1}-f_{a}-F_{b} $ (一阶“脉冲”型伪信号)$ F_{0}-f_{a}-F_{b} $ (真实目标回波信号),$ F_{0}-f_{2}-F_{b} $ (二阶交调“冲激”型伪信号) -
[1] 魏光辉, 潘晓东, 万浩江. 装备电磁辐射效应规律与作用机理[M]. 北京: 国防工业出版社, 2018. WEI G H, PAN X D, WAN H J. Feature and mechanism of electromagnetic radiation effects for equipment[M]. Beijing: National Defense Industry Press, 2018. [2] 刘尚合, 武占成, 张希军. 电磁环境效应及其发展趋势[J]. 国防科技, 2008(1): 1-6. LIU S H, WU Z C, ZHANG X J. Effect of electromagnetic environment and its development trend[J]. National Defense Technology, 2008(1): 1-6. [3] 颜克文. 短波通信设备电磁防护技术研究[D]. 成都: 电子科技大学, 2009. YAN K W. Research on protection against electromagnetic weapon for shortwave communication radio[D]. Chengdu: University of Electronic Science and Technology of China, 2009. [4] 孙国至, 刘尚合, 陈京平, 等. 战场电磁环境效应对信息化战争的影响[J]. 军事运筹与系统工程, 2006, 20(3): 43-47. SUN G Z, LIU S H, CHEN J P, et al. The influence on information-based war of battle field electromagnetic environment effects[J]. Military Operations Research and Systems Engineering, 2006, 20(3): 43-47. [5] 许彤, 陈亚洲, 王玉明, 等. 无人机数据链宽带白噪声电磁干扰效应研究[J]. 系统工程与电子技术, 2023, 45(7): 1965-1973. XU T, CHEN Y Z, WANG Y M, et al. Research on wideband white noise electromagnetic interference effect of UAV data link[J]. Systems Engineering and Electronics, 2023, 45(7): 1965-1973. [6] ZHANG D X, ZHOU X, CHENG E W, et al. Investigation on effects of hpm pulse on UAV’s datalink[J]. IEEE Trans on Electromagnetic Compatibility, 2020, 62(3): 829-839. doi: 10.1109/TEMC.2019.2915285 [7] 赵宏泽, 魏光辉, 杜雪, 等. 卫星导航接收机三阶互调阻塞效应分析[J]. 系统工程与电子技术, 2022, 44(4): 1336-1342. ZHAO H Z, WEI G H, DU X, et al. Analysis of third-order intermodulation blocking effect for satellite navigation receiver[J]. Systems Engineering and Electronics, 2022, 44(4): 1336-1342. [8] 赵宏泽, 魏光辉, 潘晓东, 等. 扫频雷达双频连续波伪信号干扰效应研究[J]. 北京航空航天大学学报, 2022, DOI: 10.13700/j.bh.1001-5965.2022.0739. ZHAO H Z, WEI G H, PAN X D, et al. Research on the interference effect of dual-frequency continuous wave pseudo-signal in swept-frequency radar[J]. Journal of Beijing University od Aeronautics and Astronautics, DOI: 10.13700/j.bh.1001-5965.2022.0739. [9] 丁国胜. 舰船大功率雷达电磁辐射场强分析和改善技术研究[D]. 南京: 南京理工大学, 2014. DING G S. Study on analysis of electromagnetic radiation field strength from ship-borne high power radar and improvement technology[D]. Nanjing: Nanjing University of Technology, 2014. [10] 毛二可, 龙腾, 韩月秋. 频率步进雷达数字信号处理[J]. 航空学报, 2001(S1): 16-25. MAO E K, LONG T, HAN Y Q. Digital signal processing of stepped frequency radar[J]. Acta Aeronautica et Astronautica Sinica, 2001(S1): 16-25. [11] 龙腾, 李眈, 吴琼之. 频率步进雷达参数设计与目标抽取算法[J]. 系统工程与电子技术, 2001(6): 26-31. LONG T, LI D, WU Q Z. Design methods for step frequency waveform and the target pick-up algorithm[J]. Systems Engineering and Electronics, 2001(6): 26-31. [12] 史劼. 高频雷达抗干扰与多目标检测[D]. 武汉: 武汉大学, 2014. SHI J. Suppressing interference and multi-target detection for HF radar[D]. Wuhan: Wuhan University, 2014. [13] ZHAO H Z, WEI G H, PAN X D. Evaluation method of noise electromagnetic radiation interference effect[J]. IEEE transactions on electromagnetic compatibility, 2023, 65(1): 69-78. doi: 10.1109/TEMC.2022.3224791 [14] 赵 凯, 魏光辉, 潘晓东, 等. 单频电磁辐射对雷达的干扰规律[J]. 系统工程与电子技术, 2021, 43(2): 363-368. ZHAO K, WEI G H, PAN X D, et al. Interference laws of single frequency electromagnetic radiation to radar[J]. Systems Engineering and Electronics, 2021, 43(2): 363-368. [15] 徐飞虎. 系统非线性对高频雷达目标探测的影响[D]. 哈尔滨: 哈尔滨工业大学, 2010. XU F H. The impact on target detection of high frequency radar as system’s nonlinearity[D]. Harbin: Harbin Institute of Technology, 2010. [16] 杜文越. Ku波段导航雷达系统设计与实现[D]. 北京: 北京理工大学, 2019. DU W Y. Design and implementation of ku band navigation radar system [D]. Beijing: Beijing Institute of Technology, 2019. [17] 中央军委装备发展部. 系统电磁环境效应试验方法[S]. 北京: 中央军委装备发展部, 2016. Equipment Development Department of the Central Military Commission. Electromagnetic environmental effects test methods for systems[S]. Beijing: Equipment Development Department of the Central Military Commission, 2016.