基于CTBN的移动对象不确定轨迹预测算法

Uncertain Trajectory Prediction of Moving Objects Based on CTBN

  • 摘要: 为了高效准确地预测移动对象动态运动轨迹,提出了一种基于轨迹时间连续贝叶斯网络(CTBN)的不确定性轨迹预测算法,充分考虑了移动速度和方向对移动对象动态运动行为的影响,包含3个主要步骤:热点区域挖掘将轨迹数据集划分为不同的热点聚簇;轨迹时间连续贝叶斯网络的构建,其由3个变量(街区号、移动速度、移动方向)构成的状态组合;利用该网络预测移动对象动态运动行为计算可能运动轨迹。不同数据集上的实验结果表明该算法的预测精度优于朴素预测算法,并证明了热点区域挖掘的作用在于能够在保证较高预测准确性的前提下提高预测时间性能近60%。

     

    Abstract: In order to predict the uncertain trajectories in an efficient and accurate fashion, this paper introduces an uncertain trajectory prediction algorithm based on trajectory continuous time Bayesian networks (CTBN). It contains three essential phases: mining hotspot regions by partitioning trajectories into distinct hotspot clusters; constructing trajectory CTBN which is a states combination of three important variables including street identifier, moving speed, and moving direction; predicting the motion behavior of moving objects in order to obtain possible trajectories. Experimental results demonstrate that the proposed method can accurately predict the possible motion curves of moving objects in different trajectory data sets when compared with the naive prediction algorithm. In addition, experiments verify the essential role of hotspot region mining, which can help save prediction time at about 60% with a guarantee of high prediction accuracy.

     

/

返回文章
返回