基于AdaBoost的脑机接口分类算法研究

Brain-Computer Interface Classification Based on AdaBoost

  • 摘要: 依据AdaBoost思想对BP神经网络、线性判别式以及支撑向量机三种传统分类器进行强化训练形成强分类器。在传统训练的基础上,根据分类器的映射特点选择相应的预处理方法和权值分布函数,降低分类器对数据特点的依赖性,提高AdaBoost的训练效果。对基于左右手运动想象的实际脑电数据进行模式分类,发现采用该思想训练的强分类器能不同程度地提高分类效果。该算法具有一定的推广意义,也证实了AdaBoost算法在脑机接口技术开发中的应用潜力。

     

    Abstract: Using the adaptive boosting (AdaBoost) algorithm, the traditional classifiers, i.e. the BP neural network, the support vector machine (SVM) and the linear discriminant analysis (LDA) classifier, are trained into stronger ones. Based on traditional classifiers, the function weights and data processing are first adjusted according to the mapped output of classifiers. This method could effectively decrease the dependence on data features. These trained classifiers are then used to identify a group of data elicited by motor imagery. Based on the AdaBoost algorithm, the trained classifiers can obtain higher classification accuracy than the traditional ones. These results confirm the potential valuation of AdaBoost algorithm in BCI applications.

     

/

返回文章
返回