Abstract:
Aiming at the major issues for data over-generalization and no unique attributes of
K-anonymity model, a modified
K-anonymity algorithm based on multiple attributes generalization is proposed in this paper. The conception of attribute approximation degree is introduced which describes the discrete degree of quasi-identifiers, and determines the candidate quasi-identifier attribute to be generalized. In the meantime, breadth-first generalization is exploited to avoid over-generalization and meets the
K-anonymity requirements ultimately. The experimental results show that the new
K-anonymity algorithm based on multiple attribute generalization can improve data precision and its efficiency is equal to Datafly algorithm. The proposed algorithm can effectively solve the issue of generalization attribute selecting when quasi-identifiers are not unique, the over-generalization of quasi-identifiers attributes can be avoided, and the usability of data can be improved.