基于马尔科夫链的轻轨乘客轨迹预测新算法

Novel Algorithm of Light Rail Passenger Trajectory Prediction Based on Markov Chain

  • 摘要: 利用重庆轻轨的乘客刷卡数据,分析了乘客出行特征,并提出了一种基于马尔科夫链的乘客轨迹预测算法。该算法首先利用贝叶斯分类器对乘客下次出行轨迹进行分类;然后,根据乘客最近一次出行轨迹与其常住地的关系,预测其下次出行轨迹。在真实轻轨交通数据集上的实验结果表明,该算法对乘客出行轨迹的预测效果优于LTMT、RNN和2-MC;同时,该算法基于大数据处理框架Spark进行编码,减少了运行时间。

     

    Abstract: By utilizing the smart card data from Chongqing light rail system, the travel characteristics of light rail passengers are analyzed and a trajectory prediction algorithm based on Markov chain is proposed. In the algorithm, the next travel trajectory of a passenger is classified by Bayesian classification and then predicted according to the relationship between the passenger's last travel trajectory and her/his residence. Experimental results based on real datasets show that the algorithm outperforms LTMT, RNN and 2-MC on predicting passenger's next travel trajectory. Meanwhile, the algorithm is coded on Spark, a big data processing framework, which reduces its runtime.

     

/

返回文章
返回