基于近邻传播的限定簇数聚类方法研究

Research on Clustering Method with Specified Cluster Number Based on Affinity Propagation

  • 摘要: 针对传统近邻传播聚类算法不能进行限定类簇数目的聚类缺陷,提出一种三阶段的改进聚类方法。该方法通过近邻传播聚类从数据集中获得中心代表点集合,利用K-means算法对中心代表点集合进行指定类簇数目的聚类进而获得初始训练集,结合改进的K最近邻算法实现数据的聚类分析。采用人工仿真数据及UCI数据集进行对比实验,实验结果分析表明,与近邻传播聚类算法和传统限定类簇数目的聚类算法相比,新聚类算法具有更好的聚类效果。

     

    Abstract: Due to disadvantage of the affinity propagation algorithm of which the number of clusters can not be pre-specified, an improved method including three phases is proposed in this paper. The proposed method uses affinity propagation algorithm to obtain the representation center points of the dataset. Then K-means is applied to the clustering of the center points and produces the initial training set. Moreover, the modified K nearest neighbor algorithm is applied to the procedure of clustering analysis. Artificial data and UCI datasets are used in experiment to compare the new algorithm with other clustering menthes. The results demonstrate that the new clustering algorithm is outperforms the affinity propagation algorithm and traditional clustering algorithms.

     

/

返回文章
返回