稀疏角度CT图像重建的一类自适应临近点算法

An Adaptive Proximal Point Algorithm for Sparse-View CT Image Reconstruction

  • 摘要: 针对全变差正则化的稀疏角度CT图像重建问题,提出了一种自适应临近点算法。该算法在临近点迭代的每一步中自适应地选取临近参数矩阵,且该矩阵是变动且不对称的。在收缩算法的框架和一定条件下可建立该算法的全局收敛性。对广泛使用的滤波反投影算法和自适应临近点算法进行了二维的仿真数据实验,实验结果表明自适应临近点算法在图像重建中是有效实用的。

     

    Abstract: This paper presents an adaptive proximal point algorithm (APPA) for sparse-view computed tomography (CT) image reconstruction based on total variation regularization. The proposed algorithm chooses an adaptive proximal parameter matrix which is neither necessary symmetric nor constant in each iteration. By using the framework of contraction method, the global convergence result could be established for the proposed algorithm under suitable conditions. Numerical results for 2-D CT reconstruction from simulated digital Shepp-Logan phantom data show that APPA method is effective and practical.

     

/

返回文章
返回