留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网络传播动力学模拟方法评述

王伟 舒盼盼 唐明 高辉

王伟, 舒盼盼, 唐明, 高辉. 网络传播动力学模拟方法评述[J]. 电子科技大学学报, 2016, 45(2): 288-294.
引用本文: 王伟, 舒盼盼, 唐明, 高辉. 网络传播动力学模拟方法评述[J]. 电子科技大学学报, 2016, 45(2): 288-294.
WANG Wei, SHU Pan-pan, TANG Ming, GAO Hui. Simulation Methods for Spreading Dynamics on Networks: A Recitation[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(2): 288-294.
Citation: WANG Wei, SHU Pan-pan, TANG Ming, GAO Hui. Simulation Methods for Spreading Dynamics on Networks: A Recitation[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(2): 288-294.

网络传播动力学模拟方法评述

详细信息
  • 中图分类号: O231.5;N945.12;N94

Simulation Methods for Spreading Dynamics on Networks: A Recitation

  • 摘要: 借助计算机实验模拟方法是预警和控制流行病传播的一个重要研究手段。该文以SIS和SIR两种经典传播模型为例,详细地介绍了利用同步更新方法和异步更新方法模拟流行病的传播过程,并比较了两种模拟方法的时空复杂度、联系及差异性。理清两种不同的计算机模拟方法不仅有助于加深对传播动力学的认识,还有助于提出和发展新的理论框架。
  • [1] MEYERS L A, POURBOHLOUL B, NEWMAN M E J, et al. Networktheory and SARS: Predicting outbreak diversity[J]. J TheorBiol, 2005(232): 71-81.
    [2] LEROY E M, ROUQUET P, FORMENTY P, et al. Multiple Ebola virustransmission events and rapid decline of central africanwildlife[J]. Science, 2004(303): 387-390.
    [3] MILLER J C, DANON L, O'HAGAN J J, et al. Student behavior during a school closure caused by pandemic influenza A/H1N1[J]. PLoS ONE, 2010(5): e10425.
    [4] 马知恩, 周义仓, 王稳地, 等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004. MA Zhi-en, ZHOU Yi-chang, WANG Wen-di, et al. Mathematical modeling and study of infectious diseasedynamics[M]. Beijing: Science Press, 2004.
    [5] KEELING M, ROHANI P. Modeling infectious diseases in humans and animals[M]. Princeton: Princeton University Press, 2007.
    [6] ANDERSON R M, MAY R M. Infectious diseases in humans[M]. Oxford: Oxford University Press, 1992.
    [7] ANDERSSON H, BRITTON T. Stochastic epidemic models and theirstatistical analysis, lecture notes in statistics[M]. New York: Springer, 2000.
    [8] KEELING M, POHANI P. Modeling infectious diseases in humansand animals[M]. Princeton: Princetion University Press, 2007.
    [9] KERMACK W O, MCKENDRICK A G. A contribution to the math-ematical theory of epidemics[J]. Proc R SocLond A, 1927(115): 700-721.
    [10] PASTOR-SATORRAS R, VESPIGNANI A. Epidemic spreading in scale-Free networks[J]. Phys Rev Lett, 2001(86): 3200-3203.
    [11] PASTOR-SATORRAS R, VESPIGNANI A. Epidemic dynamics in finite size scale-free networks[J]. Phys Rev E, 2002(65): 035108(R).
    [12] PASTOR-SATORRAS R, VESPIGNANI A. Epidemic dynamics and endemic states in complex networks[J]. Phys Rev E, 2001(63): 066117.
    [13] 周涛, 傅忠谦, 牛永伟, 等. 复杂网络上传播动力学研究综述[J]. 自然科学进展, 2005, 15(5): 513-517. ZHOU Tao, FU Zhong-qian, NIU Yong-wei, et al. Summary of research on propagation dynamics on complex networks[J]. Progress in Natural Science, 2005, 15(5): 513-517.
    [14] 李翔, 刘宗华, 汪秉宏. 网络传播动力学[J]. 复杂系统与复杂性科学, 2010, 7(2): 33-37. LI Xiang, LIU Zong-hua, WANG Bing-hong. On spreading dynamics on networks[J]. Complex Systems and Complexity Science, 2010, 7(2): 33-37.
    [15] WANG L, LI X. Spatial epidemiology of networked metapopulation: an overview[J]. Chin Sci Bull, 2014, 59(28): 3511-3522.
    [16] PASTOR-SATORRAS R, CASTELLANO C, MIEGHEM P V, et al. Epidemic processes in complex networks[J]. Rev Mod Phys, 2015(87): 925-979.
    [17] NEWMAN M E J. The spread of epidemic disease on networks[J]. Phys Rev E, 2002(66): 016128.
    [18] YANG Z, ZHOU T. Epidemic spreading in weighted networks: an edge-based mean-field solution[J]. Phys Rev E, 2012(85): 056106.
    [19] YAN G, ZHOU T, WANG J, et al. Epidemic spread in weightedscale-free networks[J]. Chin PhysLett, 2005(22): 510.
    [20] SUN Y, LIU C, ZHANG C X, et al. Epidemic spreading on weighted complex networks[J]. PhysLett A, 2014, 378(7): 635-640.
    [21] WANG R S, ALBERT R. Effects of community structure on the dynamics of random threshold networks[J]. Phys Rev E, 2013(87): 012810.
    [22] MIN Y, JIN X, GE Y, et al. The role of community mixingstyles in shaping epidemic behaviors in weighted networks[J]. PLOS ONE, 2013, 8(2): e57100.
    [23] NEWMAN M E J. Random graphs with clustering[J]. Phys Rev E, 2009(103): 058701.
    [24] BARTHELEMY M, BARRAT A, PASTOR-SATORRAS R, et al. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J]. Phys Rev E, 2004(92): 178701.
    [25] WANG W, TANG M, ZHANG H F, et al. Epidemic spreading oncomplex networks with general degree and weight distributions[J]. Phys Rev E, 2014(90): 042803.
    [26] XU E H W, WANG W, XU C, et al. Suppressed epidemics in multirelationalnetworks[J]. Phys Rev E, 2015(92): 022812.
    [27] LI R Q, TANG M, HUI P M. Epidemic spreading on multi-relational networks[J]. ActaPhys Sin, 2013, 62(16): 168903.
    [28] CUI A X, WANG W, TANG M, et al. Efficient allocation of heterogeneous response times in information spreading process[J]. Chaos, 2014(24): 033113.
    [29] SHU P, TANG M, GONG K, et al. Effects of weak ties on epidemicpredictability on community networks[J]. Chaos, 2012, 22(4): 043124.
    [30] ZHAO Z D, LIU Y, TANG M. Epidemic variability in hierarchicalgeographical networks with human activity patterns [J]. Chaos, 2012, 22(2): 023150.
    [31] BOGUNA M, PASTOR-SATORRAS R, VESPIGNANI A. Absence of epidemic threshold in scale-free networks with degree correlations[J]. Phys Rev E, 2003(90): 028701.
    [32] BOGUNA M, CASTELLANO C, PASTOR-SATORRAS R. Nature of theepidemic threshold for the susceptible-infected-susceptible dynamics in networks[J]. Phys Rev Lett, 2013, 111(6): 068701.
    [33] CASTELLANO C, PASTOR-SATORRAS R. Thresholds for epidemic spreading in networks[J]. Phys Rev Lett, 2010 (105): 218701.
    [34] SHU P, WANG W, TANG M. Numerical identification of epidemic thresholds for susceptible-infected-recovered model on finite-size networks[J]. Chaos, 2015(25): 063104.
    [35] KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nat Phys, 2010(6): 888-893.
    [36] CHEN D B, LU L Y, SHANG M S, et al. Identifying influentialnodes in complex networks[J]. Physica A, 2002, (391): 1777-1787.
    [37] LIU J G., REN Z M, GUO Q. Ranking the spreading influence incomplex networks[J]. Physica A, 2013(392): 4154-4159.
    [38] PEI S, MAKSE H A. Spreading dynamics in complexnetworks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2013(13): P12002.
    [39] PINTO P C, THIRAN P, VETTERLI M. Locating the sourceof diffusion in large-scale networks[J]. Phys Rev Lett, 2012,109(6): 068702.
    [40] CHEN D B, XIAO R, ZENG A. Predicting the evolution of spreading oncomplex networks[J]. Sci Rep, 2014(4): 6108.
    [41] BROCKMANN D, HELBING D. The hidden geometry of complex, network-driven contagion phenomena[J]. Science, 2013(342): 1337-1442.
    [42] 王伟, 杨慧, 龚凯, 等. 复杂网络上的局域免疫研究[J]. 电子科技大学学报,2013, 42(6): 817-830. WANG Wei, YANG Hui, GONG Kai, et al. Local immunization algorithm on complex networks[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(6): 817-830.
    [43] PASTOR-SATORRAS R, VESPIGNANI A. Immunization of complex networks[J]. Phys Rev E, 2002(65): 036104.
    [44] COHEN R, HAVLIN S, BEN-AVRAHAM D. Efficient immunization strategies for computer networks and populations[J]. Phys Rev Lett, 2003, 91(24): 247901.
    [45] YANG H, TANG M, ZHANG H F. Efficient community-basedcontrol strategies in adaptive networks[J]. New J Phys, 2012(14): 123017.
    [46] LIU H K, YANG H, TANG M, et al. Local transient-based quarantine strategy in adaptive networks[J]. Scientia Sinica Physica, MechanicaAstronomica, 2013, 43(2): 1-10.
    [47] WANG W, TANG M, YANG H, et al. Asymmetrically interactingspreading dynamics on complex layered networks[J]. Sci Rep, 2014(4): 5097.
    [48] WU Z X, RONG Z. Boosting cooperation by involving extortion in spatial Prisoner's dilemma[J]. Phys Rev E, 2014(90): 062102.
    [49] SCHONFISCH B, DE ROOS A. Synchronous and asynchronous updating in cellular automata[J]. BioSystems, 1999(51): 123-143.
    [50] WOLFRAM S. Statistical mechanics of cellular automata[M]. Rev Mod Phys, 1983(55): 601-644.
    [51] HUBERMAN B A, GLANCE N S. Evolutionary games and computer simulations[J]. Proc Natl Acad Sci USA, 1993(90): 7716-7781.
    [52] VOLZ E M, MILLER J C, GALVANI A, et al. Effects of heterogeneousand clustered contact patterns on infectious disease dynamics[J]. PloS Comput Biol, 2013(7): e1002042.
    [53] FU X C, SMALL M, CHEN G R. Propagation dynamics on complex networks: Models, methods and stability analysis[M]. BeiJing: High Education Press, 2014.
    [54] GILLESPIE D. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[J]. Journal of Computational Physics, 1976(22): 403G.
    [55] GILLESPIE D. Exact stochastic simulation of coupled chemicalreactions[J]. Journal of Physical Chemistry, 1977(81): 2340-2361.
    [56] GILLESPIE D. Approximate accelerated stochastic simulation ofchemically reacting systems[J]. Journal of Chemical Physics, 2001(115): 1716-1733.
    [57] MARRO J, DICKMAN R. Nonequilibrium phase transition in latticemodels[M]. London: Cambridge University Press, 1999.
    [58] FERREIRA S C, CASTELLANO C, PASTOR-SATORRAS R. Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results[M]. Phys Rev E, 2012(86): 041125.
    [59] GOLTSEV A V, DOROGOVTSEV S N, OLIVEIRA J G, et al. Localizationand spreading of diseases in complex networks[J]. Phys Rev Lett, 2012(109): 128702.
    [60] VOJTA T. Rare region effects at classical, quantum and nonequilibrium phase transitions[J]. J Phys A Math Gen, 2006(39): 143-205.
    [61] ODOR G. Spectral analysis and slow spreading dynamics oncomplex networks[J]. Phys Rev E, 2013, 88(3): 032109.
    [62] MUNOZ M A, JUHASZ R, CASTELLANO C, et al. Griffiths phases oncomplex networks[J]. Phys Rev Lett, 2010, 105(12): 128701.
    [63] MORETTI P, A. MUNOZ M. Brain architecture, griffiths phases,and the stretching of criticality[J]. Nat Commu, 2013(4): 2521.
    [64] FERREIRA R S, FERREIRA S C. Critical behavior of the contact process on small-world networks[J]. EurPhys J B, 2013(86): 462.
    [65] WU Q, FU X, SMALL M, et al. The impact of awareness on epidemic spreading in networks[J]. Chaos, 2012(22): 013101.
    [66] DE OLIVEIRA M M, DICKMAN R. How to simulate the quasistationary state[J]. Phys Rev E, 2005(71): 016129.
    [67] MIEGHEM P V, DE BOVENKAMP R. Non-Markovian infection spread dramatically alters the susceptible infected-susceptible epidemic threshold in networks[J]. Phys Rev Let-t, 2013(110): 108701.
    [68] CATOR E, DE BOVENKAMP R, MIEGHEM P V. Susceptible-infected-susceptible epidemics on networks with general infection andcure times[J]. Phys Rev E, 2013(87): 062816.
    [69] CATOR E, MIEGHEM P V. Susceptible–infected-susceptible epidemics on the complete graph and the star graph: Exact analysis[J]. Phys Rev E, 2013(87): 012811.
    [70] LI C, DE BOVENKAMP R, MIEGHEM P V. Susceptible infected-susceptible model: a comparison of N-intertwined and heterogeneous mean-field approximations[J]. Phys Rev E, 2012(86): 026116.
    [71] DE BOVENKAMP R, KUIPERS F, MIEGHEM P V. Domination-timedynamics in susceptible-infected-susceptible virus competitionon networks[J]. Phys Rev E, 2014(89): 042818.
    [72] WANG Y, XIAO G, LIU J. Dynamics of competing ideas in complex social systems[J]. New J Phys, 2012(14): 013015.
    [73] SAHNEH F D, SCOGLIO C. Competitive epidemic spreading overarbitrary multilayer networks[J]. Phys Rev E, 2014(89): 062817.
    [74] HARRIS K D, DANFORTH C M, DODDS P S. Dynamical influenceprocesses on networks: General theory and applications to social contagion[J]. Phys Rev E, 2013(88): 022816.
  • [1] 邢玲, 邓凯凯, 吴红海, 谢萍.  复杂网络视角下跨社交网络用户身份识别研究综述 . 电子科技大学学报, 2020, 49(6): 905-917. doi: 10.12178/1001-0548.2019182
    [2] 张帆, 郭强, 刘建国.  基于二阶信息的复杂系统弹性度量研究 . 电子科技大学学报, 2019, 48(3): 456-461. doi: 10.3969/j.issn.1001-0548.2019.03.023
    [3] 赵紫娟, 李小珂, 郭强, 杨凯, 刘建国.  基于LDA的复杂网络整体研究态势主题分析 . 电子科技大学学报, 2019, 48(6): 931-938. doi: 10.3969/j.issn.1001-0548.2019.06.019
    [4] 邵鹏, 胡平.  复杂网络特殊用户对群体观点演化的影响 . 电子科技大学学报, 2019, 48(4): 604-612. doi: 10.3969/j.issn.1001-0548.2019.04.019
    [5] 吴宗柠, 樊瑛.  复杂网络视角下国际贸易研究综述 . 电子科技大学学报, 2018, 47(3): 469-480. doi: 10.3969/j.issn.1001-0548.2018.03.023
    [6] 顾亦然, 朱梓嫣.  基于LeaderRank和节点相似度的复杂网络重要节点排序算法 . 电子科技大学学报, 2017, 46(2): 441-448. doi: 10.3969/j.issn.1001-0548.2017.02.020
    [7] 程灿, 郭强, 刘建国.  网络路由传输策略的研究进展 . 电子科技大学学报, 2015, 44(1): 2-11. doi: 10.3969/j.issn.1001-0548.2015.01.001
    [8] 苟智坚, 范明钰, 王光卫.  复杂网络中无信任边界限制的连续观点演化研究 . 电子科技大学学报, 2015, 44(5): 749-756. doi: 10.3969/j.issn.1001-0548.2015.05.019
    [9] 尚可可, 许小可.  基于置乱算法的复杂网络零模型构造及其应用 . 电子科技大学学报, 2014, 43(1): 7-20. doi: 10.3969/j.issn.1001-0548.2014.01.002
    [10] 汤蓉, 唐常杰, 徐开阔, 杨宁.  基于局部聚合的复杂网络自动聚簇算法 . 电子科技大学学报, 2014, 43(3): 329-335. doi: 10.3969/j.issn.1001-0548.2014.03.002
    [11] 周涛, 张子柯, 陈关荣, 汪小帆, 史定华, 狄增如, 樊瑛, 方锦清, 韩筱璞, 刘建国, 刘润然, 刘宗华, 陆君安, 吕金虎, 吕琳媛, 荣智海, 汪秉宏, 许小可, 章忠志.  复杂网络研究的机遇与挑战 . 电子科技大学学报, 2014, 43(1): 1-5. doi: 10.3969/j.issn.1001-0548.2014.01.001
    [12] 唐雪飞, 杨陈皓, 牛新征.  复杂网络链路危险度预测模型研究 . 电子科技大学学报, 2013, 42(3): 442-447. doi: 10.3969/j.issn.1001-0548.2013.03.024
    [13] 王伟, 杨慧, 龚凯, 唐明, 都永海.  复杂网络上的局域免疫研究 . 电子科技大学学报, 2013, 42(6): 817-830.
    [14] 张昌利, 龚建国, 闫茂德.  基于复杂网络的社会化标签语义相似度分析 . 电子科技大学学报, 2012, 41(5): 642-648. doi: 10.3969/j.issn.1001-0548.2012.05.001
    [15] 陈娟, 陆君安.  复杂网络中尺度研究揭开网络同步化过程 . 电子科技大学学报, 2012, 41(1): 8-16. doi: 10.3969/j.issn.1001-0548.2012.01.002
    [16] 谢福鼎, 张大为, 黄丹, 张永, 孙岩.  寻找复杂网络社团的稠密集算法 . 电子科技大学学报, 2011, 40(4): 483-490. doi: 10.3969/j.issn.1001-0548.2011.04.001
    [17] 张昊, 陈超, 王长春.  基于空穴理论的复杂网络传染病传播控制 . 电子科技大学学报, 2011, 40(4): 491-496.
    [18] 史定华.  无标度网络:基础理论和应用研究 . 电子科技大学学报, 2010, 39(5): 644-650. doi: 10.3969/j.issn.1001-0548.2010.05.001
    [19] 吕琳媛.  复杂网络链路预测 . 电子科技大学学报, 2010, 39(5): 651-661. doi: 10.3969/j.issn.1001-0548.2010.05.002
    [20] 汪小帆, 刘亚冰.  复杂网络中的社团结构算法综述 . 电子科技大学学报, 2009, 38(5): 537-543. doi: 10.3969/j.issn.1001-0548.2009.05.007
  • 加载中
计量
  • 文章访问数:  7570
  • HTML全文浏览量:  368
  • PDF下载量:  716
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-04-15

网络传播动力学模拟方法评述

  • 中图分类号: O231.5;N945.12;N94

摘要: 借助计算机实验模拟方法是预警和控制流行病传播的一个重要研究手段。该文以SIS和SIR两种经典传播模型为例,详细地介绍了利用同步更新方法和异步更新方法模拟流行病的传播过程,并比较了两种模拟方法的时空复杂度、联系及差异性。理清两种不同的计算机模拟方法不仅有助于加深对传播动力学的认识,还有助于提出和发展新的理论框架。

English Abstract

王伟, 舒盼盼, 唐明, 高辉. 网络传播动力学模拟方法评述[J]. 电子科技大学学报, 2016, 45(2): 288-294.
引用本文: 王伟, 舒盼盼, 唐明, 高辉. 网络传播动力学模拟方法评述[J]. 电子科技大学学报, 2016, 45(2): 288-294.
WANG Wei, SHU Pan-pan, TANG Ming, GAO Hui. Simulation Methods for Spreading Dynamics on Networks: A Recitation[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(2): 288-294.
Citation: WANG Wei, SHU Pan-pan, TANG Ming, GAO Hui. Simulation Methods for Spreading Dynamics on Networks: A Recitation[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(2): 288-294.
参考文献 (74)

目录

    /

    返回文章
    返回