• 物理电子学 •

α -Al₂O₃中三角Ru³⁺中心的g因子研究

邬劭轶, 付 强, 林季资, 张华明, 鲁广铎

(电子科技大学物理电子学院 成都 610054)

【摘要】基于晶体场模型,采用三角对称下4d⁵离子各向异性g因子微扰公式,对α-Al₂O₃中三角Ru³⁺中心的电子顺磁共振 实验结果进行了理论研究。计算中利用较新的Ru³⁺自由离子旋轨耦合参数,考虑了轨道缩小因子和旋轨耦合参数对杂质Ru³⁺ 中心g因子的影响,讨论了Ru³⁺中心的局部结构性质,结果表明理论与实验符合得很好。 关键词 Al₂O₃;晶体场;电子顺磁共振;Ru³⁺;旋轨耦合

中图分类号 O703.7 文献标识码 A

An Investigation of the g Factors of the Trigonal Ru³⁺ Centers in α-Al₂O₃

WU Shao-yi, FU Qiang, LIN Ji-zi, ZHANG Hua-ming, and LU Guang-duo (School of physical Electronic, University of Electronic Science and Technology of China Chengdu 610054)

Abstract Based on the crystal-field theory, the anisotropic g factors of the trigonal Ru^{3+} center in α -Al₂O₃ are theoretically studied by using the perturbation formulas of the g factors for a $4d^5$ ion in trigonal symmetry. In these formulas, the orbital reduction factor k and the spin-orbit coupling parameter ζ_d for the impurity Ru^{3+} in the crystal as well as their contributions to the g factors are taken into account in a uniform way. The calculated results show good agreement with the experimental data. In addition, the local structure property of the impurity center is also discussed.

Key words Al₂O₃; crystal fields; electron paramagnetic resonance; Ru³⁺; spin-orbit coupling

刚玉晶体(α-Al₂O₃)是一种非常重要的激光材 料,在诸多领域具有重要应用,因而一直受到人们 的普遍关注^[1-5]。电子顺磁共振(electron paramagnetic resonance, EPR)实验技术是研究晶体中顺磁杂质离 子(如3d"离子)的缺陷结构和自旋能级特性的有效工 具,近年来获得了比较丰富的实验结果。但是对于 第二过渡族(4d")离子, EPR研究相对较少, 如文献 [6-8]采用EPR实验技术测量了刚玉中三角Ru³⁺离子 (包括其他一些3d"离子,如V³⁺等)中心的各向异性g 因子。在对上述实验结果的解释中,Ru³⁺离子的旋 轨耦合参数由二价Ru²⁺的数值粗略估计而得到^[6],这 一重要参数的误差将可能对理论结果造成一定的影 响。为了更好地研究α-Al₂O₃中三角Ru³⁺离子中心的 电子顺磁共振实验结果,在晶体场模型下,本文采 用较新的自由Ru³⁺离子旋轨耦合参数,基于较统一 的理论框架考虑杂质Ru³⁺在晶体中的轨道缩小因子 k和旋轨耦合参数Ci 对g因子的影响。

1 理论与计算

在α-Al₂O₃晶体中,Al³⁺离子被6个O²⁻负离子所 包围,形成畸变的八面体,而Al³⁺处于偏离八面体中 心的位置上,其空间构型(局部对称性)属于三角对称 (C₃点群)^[7]。当Ru³⁺掺入晶体后,它将占据母体Al³⁺ 离子位置,并保留原有的三角对称。由于杂质和母 体阳离子具有相同的电荷,故不需要电荷补偿。Ru³⁺ 的电子组态为4d⁵,在八面体中属于强场情形,5个 电子都将占据能量较低的t_{2g}轨道(即t⁵_{2g}),故表现为 低自旋态(S=1/2),并等效于一个d轨道空穴,对应于 T_{2g}不可约表示^[9-11]。在三角晶场作用下,上述不可 约表示将分裂为一个轨道单态t₀和一个轨道二重态 t_±,其中t₀为基态。另一方面,旋轨耦合作用将使其 进一步分裂为三个Kramers双重态。通常在低温下测 量的g因子对应于最低的Kramers双重态。根据文献 [8],三角对称下4d⁵离子的各向异性g因子微扰公式

收稿日期: 2006-07-25; 修回日期: 2007-08-12

作者简介: 邬劭轶(1970-), 男, 博士, 教授, 主要从事晶体中过滤离子电子顺磁共振谱方面的研究.

可表示为:

$$\begin{cases} g_{\parallel} = 2 |(1+k)\cos^2 \alpha - \sin^2 \alpha| \\ g_{\perp} = 2 |\sqrt{2k}\cos\alpha\sin\alpha + \sin^2 \alpha| \end{cases}$$
(1)

且有:

$$\tan 2\alpha = \sqrt{2} / [1/2 - (\nu/\zeta_{\rm d})]$$
 (2)

式中 k为轨道缩小因子,表征晶体中d轨道的平均 共价效应,可定义为:

$$k = -\langle t_{\perp} | L_z | t_{\perp} \rangle \tag{3}$$

式中 v为三角晶场参量; ζ_d 为晶体中 Ru^{3+} 离子的旋 轨耦合参数,通常可表示为轨道缩小因子k与对应的 自由离子值 ζ_d^0 的乘积^[9]:

$$\zeta_{d} = k \zeta_{d}^{0}$$
(4)
此外,还可定义g因子各向异性为:
$$\Delta g = g_{\parallel} - g_{\perp} = 2 |(1+k)\cos^{2} \alpha - k\sin 2\alpha / \sqrt{2} - 2\sin^{2} \alpha |$$
(5)

从式(1)、(2)和式(5)可以看出,三角对称下4 d^{5} 离子 的g因子通常与自由电子值2有一定的偏差。显然, 当 ν =0时,由式(2)可知 α = (1/2)tan⁻¹(2 $\sqrt{2}$)≈35.26°, 即对应于各向同性的g因子: $g_{1/2} = g_{\perp} = 2$ 。值得注意的 是: α -Al₂O₃中的Ru³⁺与3 d^{5} (如Mn²⁺、Fe³⁺等)的情况 很不相同。后者的 t_{2g} 和 e_{g} 轨道分别有3个和2个电子, 表现为高自旋态(S = 5/2),属于弱场或者中间场的 情况,基态一般为⁶A₁轨道单重态,且实验测得的g因子大多非常接近于2。

对于自由Ru³⁺离子^[10], $\zeta_d^0 \approx 1180 \text{ cm}^{-1}$ 。在上面 的公式中,只有两个未知量,即三角场参量v和轨道 缩小因子k,可作为调节参量。通过调整参量v、k使 基于式(1)的g因子理论值与实验值相符合,可得到 $v\approx$ 940 cm⁻¹, $k\approx 0.835$,对应角 α 值为53.90°。上述三角 场参量与前人所得到的 α -Al₂O₃中三价阳离子(如 Cr³⁺)的结果($v\approx$ 990 cm⁻¹)很接近,因而是合理的。 对应的 $g_{//}$ 、 g_{\perp} 和各向异性 Δg 的计算值如表1所示。 为了便于比较,本文给出了文献[8]的理论结果(拟合 参量 $k\approx 0.837 \pi v/\zeta \approx 0.936$,对应角 α 值为53.57°)。

从表1可以看出,本文的计算结果与实验符合 很好,且优于文献[8]的理论值。

表1 。	α-Al ₂ O ₃ 中三角	角Ru³⁺中心	·的g因子
------	--------------------------------------	---------------------------	-------

	g //	g_\perp	g
文献[8]计算值	0.001 2	2.425 8	2.424 6
本文计算值	0.031 6	2.430 0	2.398 4
文献[6]实验值	< 0.06	2.430 0	>2.370

2 讨 论

由拟合EPR实验数据得到的轨道缩小因子k可 以看出,对 α -Al₂O₃的Ru³⁺体系中的Ru³⁺—O²⁻键具有 较明显的共价性,这与第二过渡族(4 d^n)离子一般较 第一过渡族(3 d^n)离子具有更强的共价性相符 合^[12],即前者的4d轨道更容易与配体轨道混合而形 成分子轨道,并使其旋轨耦合参数在晶体中有较大 (约17%)的缩减。

对于α-Al₂O₃中Ru³⁺,各向异性g因子对轨道缩 小因子k和三角场参量v很敏感。如在k值处于0.830~ 0.846之间时,g//随k的增大而减小,而g₁随k的增大 而增大。但是k的变化对g因子的影响较复杂,且对 各向异性Δg也有贡献。这点与常见的3d"离子的情况 有所不同。如对八面体场中3d³和3d⁸离子的轨道单 重A_{2g}基态,以及八面体场中3d⁷离子的轨道三重T_{1g} 基态的情况,g因子数值随体系共价性的增强(或k的 减小)而单调减小,而g因子各向异性则几乎不受影 响。另一方面,随着三角场参量v值的增大,g//和g₁ 都相应增大,同时各向异性Δg也有所增加,说明三 角畸变导致了g因子各向异性。当完全不考虑共价性 和三角畸变时,即令式(1)中k=1,v=0,则回复到立 方对称的纯离子键情形。

对于α-Al₂O₃中的Ru³⁺,其三角场参量v一方面源 于母体Al³⁺位置的氧八面体在三次轴方向上相对立 方对称的偏离,即金属-配体键关于三次轴的夹角平 均为54.80°,大于立方时的标准值54.74°,近似对应 于沿三次轴方向压缩的八面体。另一方面,三角畸 变还可能来自于杂质离子的轴向移动。前面得到的v 值(~940 cm⁻¹)显示Ru³⁺可能并非占据理想的Al³⁺位 置。由于Ru³⁺比Al³⁺的半径大30%以上,后者被取代 后,将引起局部晶格畸变,从而导致杂质Ru³⁺向远 离八面体中心的方向移动一段距离。在 α -Al₂O₃的晶 格中,沿氧八面体三次轴方向,为2个A1³⁺和1个空 位八面体次序排列的阳离子。近邻Al³⁺离子间的静电 排斥力会使它们偏离各自的八面体中心而处于靠近 不同空位的偏心位置。当母体Al³⁺被更大的杂质Ru³⁺ 替代时,作用在杂质离子上的静电排斥力将增大并 使它进一步远离八面体中心。经初步估算,该位移 大约在0.01~0.02 nm范围,而这一位移对三角畸变 的贡献大约占45%。

3 结 论

基于晶体场模型, 较统一地考虑了轨道缩小因

子和旋轨耦合参数对α-Al₂O₃中Ru³⁺晶体g因子的贡献,所得结果与实验符合很好,并较前人工作有所改进。通过讨论杂质Ru³⁺的局部结构性质,表明该体系具有较明显的共价效应,且三角畸变对g因子(特别是各向异性Δg)有明显的贡献。

参考文献

- [1] JIMENEZ DE M. C, SUAREZ-GARCIA A, SERNA R, et al. Optical activation of Er³⁺ in Al₂O₃ during pulsed laser deposition[J]. Optical Materials, 2007, 29(5): 539-542.
- [2] XIANG X, ZU X T, ZHU S, et al. Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al₂O₃ single crystals[J]. Appl Phys Lett, 2004, 84: 52-54.
- [3] LEBEDEV M, KRUMDIECK S. Optically transparent, dense α-Al₂O₃ thick films deposited on glass at room temperature[J]. Current Applied Physics, 2008, 8(3-4): 233-236.
- [4] PAN C, CHEN S Y , SHEN P. Photoluminescence and transformation of dense Al₂O₃: Cr³⁺ condensates synthesized by laser-ablation route[J]. Journal of Crystal Growth, 2008, 310(3): 699-705.
- [5] WEINSTEIN I A, POPKO E A. The simulation of TL processes in α -Al₂O₃ using different ratios between parameters of trapping and luminescent centers[J]. Journal

(上接第403页)

参考 文 献

- BENNET C H, BRASSARD G. Quantum cryptography: Public-key distribution and tossing[C]//Proceedings of IEEE International conference on Computers, Systems and Signal Processing. Bangalore India: IEEE Press, 1984.
- [2] EKERT A K. Quantum cryptography based on Bell's theorem[J]. Physical Review Letters, 1991, 67: 661-663.
- [3] 张德喜, 赵秋宇, 李晓宇. 利用贝尔测量的高效量子密钥 分配协议[J]. 电子科技大学学报, 2006, 35(6): 917-919.
- [4] ZHANG De-xi, LI Xiao-yu. A quantum information hiding scheme using orthogonal product states[J]. WSEAS Transactions on Computers, 2007, 6(5): 757-762.
- [5] ZHANG De-xi, LI Xiao-yu. Quantum authentication using orthogonal product states[C]//Proceedings of the 3rd International Conference on Natural Computation (ICNC'07). Haikou: IEEE Computer Society, 2007: 608-612.
- [6] GOLDENBERG L, VAIDMAN L. Quantum cryptography based on orthogonal states[J]. Physical Review Letters, 1995, 75: 1239-1243.

of Luminescence, 2007, 122/123: 377-380.

- [6] GESCHWIND S, REMEIKA J P. Paramagnetic resonance of Gd³⁺ in Al₂O₃[J]. Phys Rev, 1961, 122: 757-761.
- [7] 魏 群,杨子元,王参军,等. Al₂O₃: V³⁺晶体局域结构及 其自旋哈密顿参量研究[J]. 物理学报,2007,56(4): 2393-2398.
- [8] GESCHWIND S, REMEIKA J P. Spin resonance of transition metal ions in corundum[J]. J Appl Phys, 1962, 33: 370-377.
- [9] ABRAGAM A, BLEANEY B. Electron paramagnetic resonance of transition ions[M]. London: Oxford University Press, 1970.
- [10] WU S Y, FU Q, LIN J Z, et al. Theoretical studies of the local structures and the EPR parameters for Ru³⁺ in the garnets[J]. Optical Materials, 2007, 29: 1014-1018.
- [11] HODGES J A. Strongly enhanced superhyperfine interaction on Ru³⁺ in Tm₃Al₅O₁₂[J]. J Phys C: Solid State Phys, 1985, 18: 4373-4384.
- [12] YU W L, ZHAO M G, LIN Z Q. High-order perturbation formulae for the zero-field splitting of a ⁶S ion in C₃ symmetry and its application to Mn(I):Ca₅(PO₄)₃F[J]. J Phys C: Solid State Phys, 1985, 18: 1857-1863.

- [7] HUTTNER B, IMOTO N, GISIN N, et al. Quantum cryptography with coherent states[J]. Physical Review A, 1995, 51: 1863-1869.
- [8] CABELLO A. Quantum key distribution in the holevo limit[J]. Physical Review Letters, 2000, 85: 5635-5638.
- [9] LI Xiao-yu. Quantum key distribution using the Bell state measurement[J]. International Journal of Modern Physics C, 2003, 14(2): 761-763.
- [10] LONG G L, LIU L S. General scheme for superdense coding between multiparties[J]. Physical Review A, 2002, 65: 032305.
- [11] KIMURA T, NAMBU Y, HATANAKA T, et al. Singlephoton interference over 150km transmission using silica-based integrated-optic interferometers for quantum cryptography[J]. Jpn J Appl Phys Part 2, 2004, 43(9A/B): L1217-L1219.
- [12] BENNETT C H, DIVICENZO D P, FUCHS C A, et al. Quantum nonlocality without entanglement[J]. Physical Review A, 1999, 59: 1070-1091.

编辑税红