电子科技大学学报  2015, Vol. 44 Issue (6): 940-945
石英增强光声光谱技术发展现状    [PDF全文]
王亚非, 刘丽娴, 高椿明, 卢泽宇, 周鹰    
电子科技大学光电信息学院 成都 610054
摘要: 痕量气体检测技术在污染监测、工业生产、国防安全等领域均发挥了重要的作用。石英增强光声光谱技术(QEPAS)具有抗干扰能力强、体积小、灵敏度高(ppb量级)等特点,是痕量气体检测技术的研究热点之一,实现了对多种有毒气体的高灵敏度检测。该文叙述了QEPAS技术原理,回顾了5种不同结构QEPAS系统的发展情况及进展,并对该技术的研究前景进行了展望。
关键词: 归一化噪声等效吸收系数     石英增强光声光谱     石英音叉     痕量气体检测    
Review of Quartz Enhanced Photoacoustic Spectroscopy
WANG Ya-fei, LIU Li-xian, GAO Chun-ming, LU Ze-yu, ZHOU Ying    
School of Optoelectronic Information, University of Electronic Science and Technology of China Chengdu 610054
Abstract: Trace gas detection technology is an important approach widely used in the field of air pollution monitoring, industrial production and national security. Quartz enhanced photoacoustic spectroscopy (QEPAS), a highlighted focus of trace gas detection technology, has the potential of toxic and harmful gas detection due to its features of strong anti-interference, small scale and high sensibility. This paper briefly summarizes the fundamentals of QEPAS technology, presents the main performance of QEPAS technology developed in the recent years, and finally discusses the prospects of QEPAS technology according to the current requirement.
Key words: normalized noise equivalent absorption coefficient     quartz enhanced photoacoustic spectroscopy (QEPAS)     quartz tuning fork (QTF)     trace gas detection    

大气环境中存在多种微量气体,如甲烷(CH4)、臭氧(O3)、一氧化碳(CO)、二氧化硫(SO2)、氮氧化物(NOX)、乙烯(C2H2)、氟化物(HFCS、SF6)等,浓度在ppt~ppm量级[1, 2, 3, 4],它们的含量虽然很低,但是却对环境有很大的影响。如对流层臭氧是仅次于二氧化碳、甲烷而排在第3位的温室气体;SO2排放的增多导致酸雨的形成;CO2等温室气体浓度增加会对全球性气候造成影响等。人体的生理状态可通过检测人体排出的微量气体来获取[5],如判断某人是否有酒后驾车的嫌疑,可通过检测其呼出气体中的乙醇含量[6],判断某糖尿病人是否有酮酸中毒症,可检测其呼出气体中的丙酮含量[7]。近年来,各种恐怖爆炸事件层出不穷,据统计全球每天都有一起或数起恐怖爆炸惨案发生[8],预防和打击爆炸活动受到世界各国的普遍重视。爆炸物的远距离探测和识别可使检测人员和设备与检测对象保持在安全距离外[9]。因此,痕量气体检测技术具有非常广泛的应用前景,开展该技术的研究具有十分重要的意义。

PAS技术的出现可以追溯到1880年Bell发现的光声效应[10]。传统PAS系统采用光声池(共振腔或样品室)隔离噪声并放大信号[11, 12, 13, 14],其系统噪声主要来源于光声池内壁和光窗的影响[15]。虽然差分式光声池被用来降低系统背景噪声和提高系统信噪比[16],但由于光声池体积受到声共振条件的限制,难以实现微型化。

文献[17]提出了QEPAS技术,历经十几年的发展,现已成为痕量气体检测技术热点之一。该技术利用品质因数Q高达104的声共振传感器石英音叉(QTF)作为光声信号增强器件[17],由于QTF独特的高共振频率、窄带宽、体积小、响应灵敏的优点,使该技术具有动态范围大、可靠性好、操作简单、无波长选择性、体积小、灵敏度高等特点。可实现对多种有毒有害气体(CO、N2O、SO2、NO、NO2、CH4、NH3等)的检测,并易于实现系统微型化,能在狭小空间中完成对气体的检测。

1 QEPAS技术原理

QEPAS技术采用灵敏的声共振传感器QTF代替传统PAS系统中的声学谐振腔和微音器来积累并检测光声信号,从而消除了声共振条件对气室的限制。同时应用可调谐激光吸收光谱技术[18],结合波长调制原理[19],抑制了背景噪声的影响,是对传统PAS技术的改进和提升。

图 1所示,当可调谐DFB激光器输出的中心波长恰好落在气体吸收谱线的中心,由于在一个调制周期内入射激光经过气体吸收谱线中心两次,因此激发的光声信号频率是调制频率的2倍[20]。即入射激光的调制频率必须为QTF共振频率的二分之一,此时系统在调制频率的二次谐频处共振。由波长调制原理可知,信号偶次阶谐波峰值位于吸收线中心,随着阶数的增加,谐波峰值幅值迅速减少。在QEPAS系统中,背景噪声主要来自于入射激光与QTF及共振管直接作用产生的非气体吸收信号,其频率与光源调制频率一致(即一阶谐波频率),通过二阶谐波检测,可以将大部分的背景噪声过滤消除。所以,二阶谐波具有抑制背景噪声的作用,常用于实际的气体测量。

图1 二倍频信号产生过程示意图

QEPAS系统如图 2所示[17, 21],采用波长连续可调的DFB激光器作为光源,激光器的输出波长由激光控制器控制,通过改变激光器的温度和注入电流实现。函数发生器提供QTF共振频率的二分之一正弦波长调制信号。激光器输出光经光纤(或准直会聚)引至QTF两叉股间隙的中央产生的光声信号二阶谐频的频率与QTF的共振频率相同,QTF共振产生电流,由互阻抗放大器放大并转换为电压信号后送入锁相放大器。锁相放大器接收并解调信号,以二阶谐波信号作为气体测量的参考信号,锁相放大器的输出送入计算机存储并进行进一步的数据处理分析。经样品池中气体吸收后输出的激光由光电探测器探测,解调获得三阶谐波可用于确定吸收线中心(奇次阶谐波在吸收线中心处为零[19]),并校正激光器的输出中心波长。

图2 QEPAS系统框图

该技术的核心指标是归一化噪声等效吸收系数(NNEA),其值越小,系统探测灵敏度越高,定义为:

$\left\{ \begin{array}{l} {\rm{NNEA}} = \alpha /{D^*}{\rm{ }}\\ {D^*} = \frac{{{B^{1/2}}}}{P}\left( {\frac{{{V_{\rm{S}}}}}{{{V_{\rm{N}}}}}} \right){\rm{ }} \end{array} \right.$ (1)
式中α为吸收系数;D*为归一化探测精度,单位为Hz1/2/W;P为激光器功率;B为探测器探测带宽;VS/VN为系统输出信噪比。

2 QEPAS技术的发展现状

随着PAS技术的发展,并为实现对环境背景信号的免疫,文献[17]提出了QEPAS技术,应用品质因数(8 000~20 000)、体积小(约2 mm3)的QTF作为声共振探测器,能够灵敏探测弱光声信号,拥有远长于传统PAS技术的声能量积累周期,且抗干扰能力强,易实现微型,是对传统PAS技术的突破[22]。按照QTF不同的应用方式、系统光源的革新和光传输方式的改进,下面具体介绍5种有代表性的QEPAS技术。

2.1 共轴式QEPAS(on-beam QEPAS)

为了增强QEPAS系统信号,并且对声波的参数和其边界条件进行限制,文献[23, 24, 25, 26, 27, 28, 29, 30]将一种微共振腔(micro-resonator)应用于QEPAS系统。该系统要求入射激光穿过共振腔但不能与其壁接触以避免相互作用产生光热效应。自此共轴式QEPAS技术被广泛应用,文献[31]利用电调激光二极管作为系统光源,检测了NH3,NNEA可达2×10-8 cm-1·W·Hz-1/2,检测灵敏度为4.4 ppm。文献[32]利用带间级联激光器在液氮温度下对甲醛气体进行测试,NNEA为2.2×10-8 W·cm-1·Hz-1/2,检测灵敏度为0.6 ppm。文献[33]利用量子级联激光器作为光源进行N2O的检测,检测极限为4 ppb。文献[34]对红外区域内氟利昂气体的探测系统进行了设计,NNEA分别为2×10-8 cm-1·W·Hz-1/2。文献[35]使用波长为2 μm的连续激光器检测CO2和NH3,并分别获得了NNEA为1.4×10-8 cm-1·W·Hz-1/2和8.9×10-9 cm-1·W·Hz-1/2,检测极限分别为18 ppm和3 ppm。

但基于“裸QTF式”或“共轴式QEPAS”结构的系统无法完全达到共振波条件,共振腔两端开放引起声能量的损失;且QTF两叉间隔仅约300 μm,将限制共振腔的内径和激光的有效半径[15]

2.2 离轴式QEPAS(off-beam QEPAS)

针对共轴式QEPAS系统的不足,文献[36]首次提出“离轴式QEPAS系统”。并对空气中水蒸汽含量进行了测试,NNEA为6.9×10-9 cm-1·W·Hz-1/2。文献[37]对离轴式共振管的结构进行了优化,得出最优化结构。文献[38]基于“离轴式QEPAS系统”,对惰性气体氦气进行了检测,检测极限为1.27±0.08 ppm,NNEA为3.02×10-8 cm-1·W·Hz-1/2。文献[39]利用峰值功率为40 μW的激光器检测甲醛气体,NNEA为2×10-10 cm-1×W·Hz-1/2。文献[40]结合廉价的紫外LED(和量子级联激光器以及半导体激光器相比)探测臭氧,检测极限达到1.27 ppm,NNEA为3.02×10-8 cm-1·W·Hz-1/2

离轴式QEPAS系统的几何设计比传统的QEPAS系统更加灵活,更容易进行拆卸和组装。当QTF两叉间距减小时,无需考虑激励光束直径的优化[15]

2.3 波导式QEPAS(core waveguide QEPAS)

上述文献所报道的系统中,光源传输采用单一空间光传输模式或光纤耦合传输模式。采用光纤传输模式的QEPAS系统的进一步发展受到缺少低损耗、单模光纤的限制。空间光传输过程中伴随边缘干涉效应,所产生的背景噪声经常比QTF的热噪声大几个数量级,降低了系统的检测极限[41, 42]。空心波导(hollow core waveguide,HCW)对中红外单模激光是一种有效的传输方式[43, 44],光波导的主要优点为阈值高、损耗低、无回波反射、发散损耗小[45]。文献[46]应用量子级联激光器结合HCW技术对SF6进行了检测,检测极限为50 ppt,NNEA为2.7×10-10 W·cm-1·Hz-1/2,该结果刷新了QEPAS技术对气体检测极限的新纪录。

2.4 倏逝波QEPAS(evanescent-wave QEPAS)

光纤倏逝波基于衰减全内反射实现,具有可远距离传感、设计简单、体积小和成本低的特点[47]。锥形纳米光纤可满足倏逝波条件,包层厚度小且灵敏度高。将该技术应用到QEPAS系统中能够提高光声转换效率,锥形纳米光纤穿过QTF两叉间的缝隙,入射光将以很小的光斑半径沿着光纤方向辐射,产生倏逝波场,被锥形纳米光纤附近的气体样品吸收,产生的声压被QTF探测。文献[48]利用该技术应用近红外DFB激光器作用光源,对C2H2进行检测,检测精度为178 ppm,NNEA为1.96×10-6 cm-1·W·Hz-1/2。该检测极限可通过减小光纤半径和优化QTF进一步提高[48]。有限元仿真结果表明,当光纤直径减小至1μm以内,倏逝波场强度将会大幅度加强。而当光纤直径进一步减小至0.6 μm时,入射光将有80%以上转化为倏逝波场强度,这极大地加强了入射光与QTF的相互作用,从而提高了光能利用率[49]。倏逝波QEPAS插入损耗低并且光学校准容易,该技术的发展为实现开放式QEPAS技术奠定了基础。

2.5 THz QEPAS (Terahertz QEPAS)

THz波段的光子能量能够激励气体分子的振动跃迁(vibrational transition,V-T)和转动(rotational transition,R-T),且R-T模式的振动强度可达到中红外波段V-T模式的3倍以上[50]。在过去的十年中,光子学的发展为THz波段量子级联激光器的诞生和完善打下了坚实的基础。这种光源能够提供功率高、输出稳定、波长可连续改变、单模辐射的THz激励光。文献[51]利用THz QEPAS技术探测CH4气体,检测极限可达7 ppm。该检测极限可与在中红外波段测得的最佳结果相比拟[52]

THz QEPAS检测极限的进一步提高依赖于THz量子级联激光器输出能量的增大和THz QTF性能的优化。此外,THz QEPAS系统适用于分子吸收强度大于10-19 cm/mol的气体,如分子中包含HF、H2S、NH3、HCN、OH等基团的气体[15]

综上所述,随着人们对QEPAS技术的研究探索,研究领域和研究对象也在不断的拓宽。应用QEPAS技术在紫外、近红外、中红外和太赫兹波段检测痕量气体的检测极限如图 3所示[15]。等效噪声浓度(noise equivalent concentration,NEC)正比于气体检测极限,其与激光功率和气体吸收强度有关,由于中红外区域光源能量可选择范围更广,因此,最佳检测极限出现在该区域。QEPAS技术已能够实现多种有毒有害气体高精度检测,且检测极限在光学检测方法中处于领先地位[15]

图3 痕量气体检测探测精度[39]
3 总结与展望

本文总结了QEPAS技术的基本原理和在痕量气体检测领域的研究发展。QEPAS技术的发展经历共轴式QTF到离轴式QTF的改进,降低了QTF两叉之间距离对入射光直径和共振腔内径的限制;激光传导方式由光纤传导到WC方式传导的改善,应用量子级联激光器结合HWC型QEPAS技术检测极限可达ppt量级;倏逝波QEPAS技术的发展为QEPAS技术能够在开放性条件下工作奠定了基础和指导方向;THz QEPAS技术的发展为痕量气体检测灵敏度的进一步提高带来了曙光。

QEPAS系统检测灵敏度与其光源能量范围和QTF声共振腔响应度息息相关,所以光源的发展和QTF声共振传感器性能的提升是QEPAS技术发展亟待解决的问题。但目前大多数研究报道中都是使用一个气室并配合使用压力控制器,使系统工作在最佳压强(50~300 Torr)下以获得最大QEPAS信号输出。而实际痕量气体检测大多数要求在开放的大气环境下(即在常温常压下)实现,如何实现QEPAS常压化将成为该技术研究的重要内容。

同时,反恐中爆炸气体检测、工业生产过程监控、环境质量监测、医学临床诊断等众多领域对微量气体检测的迫切需要,促进了QEPAS技术检测向集成化、小型化、实用化方向发展。

参考文献
[1] ZAYAKHANOV A, ZHAMSUEVA G, TSYDYPOV V, et al. Automated system for monitoring asmospheric pollution[J]. Meas Tech, 2008, 51: 1342-1346.
[2] MEYER P L. Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques[J]. Rev Sci Instrum, 1990, 61: 1779-1807.
[3] GEORGOULIAS A K, KIOUTSIOUKIS I, SYMEONIDIS P, et al. AMFIC web data base-asatellite system for the monitoring and forecasting of atmospheric pollution[J]. Journal of Engineering Science and Technology Review, 2008, 1: 58-61.
[4] GÜLLÜK T, WAGNER H E, SLEMR F. A high-frequency modulated tunable diode laser absorption spectrometer for measurements of CO2, CH4, N2O, and CO in air samples of a few cm3[J]. Rev Sci Instrum, 1997, 68: 230-239.
[5] STATHEROPOULOS M, SIANOS E, AGAPIOU A, et al. Preliminary investigation of using volatile organic compounds from human expired air, blood and urine for locating entrapped people in earthquakes[J]. J Chromatogr B, 2005, 822(1-2): 112-117.
[6] MITSUBAYASHI K, MATSUNAGA H, NISHIO G, et al. Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking[J]. Biosens Bioelectron, 2005, 20(8): 1573-1579.
[7] NAKISIMOVICH N, VOROTYNTSEV V, NIKITINA N, et al. Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis[J]. Sensor Actuat B, 1996, 36: 419-421.
[8] 唐前进, 邵杰. 远距离爆炸物探测技术的研究与应用[J]. 中国安防, 2009(9): 40-45. TANG Qian-jin, SHAO Jie. The research and application of remote explosive detection technology[J]. China Security & Protection, 2009(9): 40-45.
[9] PARMETER J E. The challenge of standoff explosives detection[C]//Proc Int Carnahan Conf Secur Technol. [S.l.]: [s.n.], 2005: 355-358.
[10] WEIDMANN D, KOSTEREV A A, TITTLE F K, et al. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
[11] KERR E L, ATWOOD J G. The laser illuminated absorptivity spectrophone: a method for measurement of weak absorptivity in gases at laser wavelengths[J]. Appl Opt, 1968, 7: 915-921.
[12] HARREN F J M, REUSS J, WOLTERING E J. Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below the ppb level[J]. Appl Spectrosc, 1990, 44: 1360-1368.
[13] BIJNEN F G C, REUSS J, HARREN F J M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection[J]. Rev Sci Instrum, 1996, 67: 2914-2923.
[14] FINK T, BUESEHER S, GAEBLER R. An improved CO2 laser intracavity photoacoustic spectrometer for trace gas analysis[J]. Rev Sci Instrum, 1996, 67: 4000-4004.
[15] PATIMISCO P, SCAMARCIO G, TITTEL F K, et al. Quartz-enhanced photoacoustic spectroscopy: a review[J]. Sensors-Basel, 2014, 14: 6165-6206.
[16] MIKLÓS A, HESS P, MOHÁSCIÁ, et al. Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 μm DFB diode laser[C]// Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena. Woodbury, NY, USA: [s.n.], 1999, 463: 126-128.
[17] KOSTEREV A A, BAKHIRKIN Y A, CURL R F, et al. Quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2002, 27(21): 1902-1904.
[18] WERLE P. Tunable diode laser absorption spectroscopy: recent findings and novel approaches[J]. Infrared Physics & Technology, 1996, 37(1): 59-66.
[19] SCHMOHL A, MIKLÓS A, HESS P. Effects of adsorption-desorption processes on th response time and accuracy of photoacoustic detection of ammonia[J]. Appl Opt, 2001, 40: 2571-2578.
[20] ARNDT R. Analytical line shapes for Lorentzian signals broadened by modulation[J]. Appl Phys, 1965, 36: 2522-2524.
[21] KOSTEREV A A, TILLEL F K, SEREBRYAKOV D, et al. Applications of quartz tuning fork in spectroscopic gas sensing[J]. Rev Sci Instrum, 2005, 76: 043105:1-043105:9.
[22] LEWICKI R, WYSOCKI G, KOSTEREV A A, et al. QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm[J]. Opt Expr, 2007, 15: 7357-7366.
[23] WOJCIK M D, PHILLIPS M C, CANNON B D, et al. Gas-phase photoacoustic sensor at 8.41 μm using quartz tuning forks and amplitude-modulated quantum cascade lasers[J]. Appl Phys B, 2006, 85: 307-313.
[24] KOSTEREV A A, BUERKI P R, DONG L, et al. QEPAS detector for rapid spectral measurements[J]. Appl Phys B, 2010, 100: 173-180.
[25] WEIDMANN D, KOSTEREV A A, TITTEL F K. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
[26] HORSTJANN M, BAKHIRKIN Y A, KOSTEREV A A, et al. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2004, 79: 799-803.
[27] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region[J]. Appl Phys B, 2005, 80: 133-138.
[28] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K, et al. Photoacoustic phase shift as a chemically selective spectroscopic parameter[J]. Appl Phys B, 2004, 78: 673-676.
[29] TITTEL F K, WYSOCKI G, KOSTEREV A A, et al. Semiconductor laser based trace gas sensor technology: Recent advances and applications[M]//EBRAHIM-ZADEH M, SOROKINA I T. Mid-infrared coherent sources and applications. Houten, Netherlands: Springer, 2008: 467-493.
[30] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K, et al. QEPAS methane sensor performance for humidified gases[J]. Appl Phys B, 2008, 92: 103-109.
[31] WEIDMANN D, KOSTEREV A A, TITTLE F K, et al. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
[32] HORSTJANN M, BAKHIRKIN Y A, KOSTEREV A A, et al. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2004, 79: 799-803.
[33] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region[J]. Appl Phys B, 2005, 80: 133-138.
[34] WOJCIK M D, PHILLIPS M C, CANNON B D. Gas phase photoacoustic spectroscopy in the long-wave IR using quartz tuning forks and amplitude modulated quantum cascade lasers[J]. Proc SPIE, 2008, 6398, 63980S: 1-63980S:9.
[35] LEWICKI R, WYSOCKIN G, KOSTEREV A A, et al. Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2007, 87: 157-162.
[36] LIU K, GUO X Y, YI H M, et al. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2009, 34: 1594-1596.
[37] YI H, CHEN W, GUO X, et al. An acoustic model for microresnonator in on-beam quartz-enhanced photo-acoustic spectroscopy[J]. Appl Phys B, 2012, 108: 361-367.
[38] BOTTGER S, KOEHRING M, WILLER U, et al. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs[J]. Appl Phys B, 2013, 113: 227-232.
[39] BORRI S, PATIMISCO P, SAMPAOLO A, et al. Terahertz quartz enhanced photo-acoustic sensor[J]. Appl Phys Lett, 2013, 103: 021105:1-021105:4.
[40] BOTTGER S, KOEHRING M, WILLER U, et al. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs[J]. Appl Phys B, 2013, 113: 227-232.
[41] SPAGNOLO V, KOSTEREV A A, DONG L, et al. NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser[J]. Appl Phys B, 2010, 100: 125-130.
[42] DONG L, SPAGNOLO V, LEWICKI R, et al. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor[J]. Opt Expr, 2011, 19: 24037-24045.
[43] PATIMISCO P, SPAGNOLO V, VITIELLO M S, et al. Coupling external cavity mid-IR quantum cascade lasers with low loss hollow metallic/dielectric waveguides[J]. Appl Phys B, 2012, 108: 255-260.
[44] KÖHRING M, WILLER U, BÖTTGER S, et al. Fiber-coupled ozone sensor based on tuning fork-enhanced interferometric photoacoustic spectroscopy[J]. IEEE J Sel Top Quantum Electron, 2012, 18: 1566-1572.
[45] PATIMISCO P, SPAGNOLO V, VITIELLO M S, et al. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications[J]. Sensors-Basel, 2013, 13: 1329-1340.
[46] SPAGNOLO V, PATIMISCO P, BORRI S, et al. Mid-infrared fiber-coupled QCL-QEPAS sensor[J]. Appl Phys B, 2013, 112: 25-33.
[47] PAUL P H, KYCHAKOFF G. Fiber-optic evanescent field absorption sensor[J]. Appl Phys Lett, 1987, 51(1): 6:12-6: 14.
[48] CAO Y, JIN W, HO L H, et al. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers[J]. Opt Lett, 2012, 37: 214-216.
[49] CAO Y, JIN W, HO L H. Gas detection with evanescent-wave quartz-enhanced photoacoustic spectroscopy[J]. Proc SPIE, 2012, 8351: 835121:1-835121:6.
[50] FLYGARE W H. Molecular relaxation[J]. Acc Chem Res, 1968, 1: 121-127.
[51] BORRI S, PATIMISCO P, SAMPAOLO A, et al. Terahertz quartz enhanced photo-acoustic sensor[J]. Appl Phys Lett, 2013, 103: 021105:1-021105:4. SPAGNOLO V, PATIMISCO P, BORRI S, et al. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation[J]. Opt Lett, 2012, 37: 4461-4463.