留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双基地合成孔径雷达技术

杨建宇

杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4): 482-501.
引用本文: 杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4): 482-501.
YANG Jian-yu. Bistatic Synthetic Aperture Radar Technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482-501.
Citation: YANG Jian-yu. Bistatic Synthetic Aperture Radar Technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482-501.

双基地合成孔径雷达技术

详细信息
  • 中图分类号: TN95

Bistatic Synthetic Aperture Radar Technology

  • 摘要: 双基地合成孔径雷达(SAR)系统的发射和接收装置承载于不同的平台,系统配置灵活多样,接收装置适装性强,电磁隐蔽性好,不仅能实现对地侧视成像,还能够实现前视成像,是SAR技术新的发展方向之一。由于双基SAR在几何构型、工作模式、分辨特性和应用领域等方面与传统单基SAR存在明显差异,在成像理论、系统组成、收发同步、参数估计、运动补偿、成像处理和试验验证等方面,双基地SAR也存在一系列新的理论、方法和技术问题。近年来,国际雷达界对这些问题开展了广泛深入的研究工作,获得了一些新的认识。该文拟从空间关系和物理概念角度,论述双基SAR成像原理、构型分类、应用特点、系统组成、性能参数、研究现状和发展趋势,简要分析双基SAR与单基SAR的异同,并对双基SAR未来的发展趋势做简要的展望。
  • [1] 杨振起, 张永顺, 骆永军. 双(多)基地雷达系统[M]. 北京:国防工业出版社, 1998. YANG Zhen-qi, ZHANG Yong-shun, LUO Yong-jun. Bistatic (Multistatic) radar systems[M]. Beijin:National Defence Industry Press, 1998.
    [2] AUTERMAN J L. Phase stability requirements for bistatic SAR[C]//IEEE Nat Radar Conf. Atlanta:IEEE, 1984.
    [3] GRISHAM. Method of satellite operation using synthetic aperture radar addition holography for imaging:U.S. Patent 4,602,257[P]. 1986-07-22.
    [4] CANTALLOUBE H, WENDLER M, GIROUX V, et al. A first bistatic airborne SAR interferometry experimentpreliminary results[C]//Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2004.[S.l.]:IEEE, 2004:667-671.
    [5] DUBOIS-FERNANDEZ P, RUAULT O, WENDLER M, et al. The ONERA-DLR bistatic experiment:Design of the experiment and preliminary results[C]//Advanced SAR Workshop. Quebec:[s.n.], 2003.
    [6] DUBOIS-FERNANDEZ P, CANTALLOUBE H, RUAULT D P O, et al. Analysis of bistatic scattering behavior of natural surfaces[C]//Proceedings EUSAR 2004.[S.l.]:[s.n.], 2004.
    [7] DUBOIS-FERNANDEZ P, CANTALLOUBE H, VAIZAN B, et al. ONERA-DLR bistatic SAR campaign:Planning,data acquisition, and first analysis of bistatic scattering behavior of natural and urban targets[J]. IEE ProceedingsRadar, Sonar and Navigation, 2006, 153:214-223.
    [8] WALTERSCHEID I, ENDER J H G., BRENNER A R, et al. Bistatic SAR processing using an Omega-K type algorithm[C]//IGARSS.[S.l.]:[s.n.], 2005.
    [9] ENDER J H G. A step to bistatic SAR processing[C]//Proc of EUSAR.[S.l.]:[s.n.], 2004:356-359.
    [10] WALTERSCHEID I, BRENNER A R, ENDER J H G. Geometry and system aspects for a bistatic airborne SAR-experiment[C]//Proc EUSAR.[S.l.]:[s.n.], 2004.
    [11] ENDER J H G. Signal theoretical aspects of bistatic SAR[C]//International Geoscience and Remote Sensing Symposium.[S.l.]:[s.n.], 2003.
    [12] WALTERSCHEID I, ENDER J H G, BRENNER A R, et al. Bistatic SAR processing and experiments[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2006, 44:2710-2717.
    [13] ZENG T, CHERNIAKOV M, LONG T. Generalized approach to resolution analysis in BSAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41:461-474.
    [14] ZHANG Z H, XING M D, DING J S, et al. Focusing parallel bistatic SAR data using the analytic transfer function in the wavenumber domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11):3633-3645.
    [15] SHI J, ZHANG X, YANG J. Principle and methods on bistatic SAR signal processing via time correlation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10):3163-3178.
    [16] WANG W Q, DING C B, LIANG X D. Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems[J]. IET Radar, Sonar and Navigation, 2008, 2:1-11.
    [17] YULIN H, JIANYU Y, JUNJIE W, et al. Precise time frequency synchronization technology for bistatic radar[J]. Journal of Systems Engineering and Electronics, 2008, 19(5):929-933.
    [18] XIAN L, XIONG J, HUANG Y, et al. Research on airborne bistatic SAR squint imaging mode algorithm and experiment data processing[C]//1st Asian and Pacific Conference on Synthetic Aperture Radar, 2007. APSAR 2007.[S.l.]:IEEE, 2007:618-621.
    [19] CHEN J, XIONG J, HUANG Y, et al. Research on a novel fast backprojection algorithm for stripmap bistatic SAR imaging[C]//1st Asian and Pacific Conference on Synthetic Aperture Radar, 2007. APSAR 2007.[S.l.]:IEEE, 2007:622-625.
    [20] WU J, LI Z, HUANG Y, et al. A generalized Omega-K algorithm to process translationally variant bistatic-SAR data based on two-dimensional Stolt mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6597-6614.
    [21] RODRIGUEZ-CASSOLA M, PRATS P, SCHULZE D, et al. First bistatic spaceborne SAR experiments with tanDEM-X[J]. IEEE Geoscience Remote Sensing Letters, 2012, 9(1):33-37.
    [22] LEE P F, JAMES K. The RADARSAT-2/3 topographic mission[C]//Geoscience and Remote Sensing Symposium, IGARSS'01. IEEE 2001 International.[S.l.]:IEEE, 2001, 1:499-501.
    [23] GIRARD R, LEE P F, JAMES K. The RADARSAT-2&3 topographic mission:an overview[C]//Geoscience and Remote Sensing Symposium, 2002. IGARSS'02.[S.l.]:IEEE, 2002, 3:1477-1479.
    [24] MOCCIA A, RUFINO G, D'ERRICO M, et al. BISSAT:a bistatic SAR for earth observation[J]. Phase A Study-Final Report, ASI Research contract I, 2002, 5(5):2628-2630.
    [25] CHERNIAKOV M. Space-surface bistatic synthetic aperture radar-prospective and problems[C]//RADAR 2002.[S.l.]:IET, 2002:22-25.
    [26] KEYDEL W. Perspectives and visions for future SAR systems[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3):97-103.
    [27] AMIOT T, DOUCHIN F, THOUVENOT E, et al. The interferometric cartwheel:a multi-purpose formation of passive radar microsatellites[C]//Geoscience and Remote Sensing Symposium, IGARSS'02. 2002 IEEE International.[S.l.]:IEEE, 2002.
    [28] GUTTRICH G L, SIEVERS W E, TOMLJANOVICH N M. Wide area surveillance concepts based on geosynchronous illumination and bistatic unmanned airborne vehicles or satellite reception[C]//Radar Conference.[S.l.]:IEEE, 1997.
    [29] DENISE M, RICHARD G.. Bistatic radar experiment[C]//EUSAR'98 European Conference on Synthetic Aperture Radar. Friedrichshafen, Germany:[s.n.], 1998:31-34.
    [30] RODRIGUEZ-CASSOLA M, BAUMGARTNER S, KRIEGER G, et al. Bistatic spaceborne-airborne experiment TerraSAR-X/F-SAR:data processing and results[C]//IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium.[S.l.]:IEEE, 2008.
    [31] BAUMGARTNER S V, RODRIGUEZ-CASSOLA M, NOTTENSTEINER A, et al. Bistatic experiment using TerraSAR-X and DLR's new F-SAR system[C]//20087th European Conference on Synthetic Aperture Radar (EUSAR).[S.l.]:VDE, 2008:1-4.
    [32] WALTERSCHEID I, ESPETER T, BRENNER A R, et al. Bistatic SAR experiments with PAMIR and terraSAR-X -setup, processing, and image results[J]. IEEE Transactions on Geoscience Remote Sensing, 2010, 48(8):3268-3279.
    [33] ESPETER T, WALTERSCHEID I, KLARE J, et al. Bistatic forward-looking SAR:Results of a spaceborne-airborne experiment[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4):765-768.
    [34] BALKE J. Field test of bistatic forward-looking synthetic aperture radar[C]//IEEE International Radar Conference.[S.l.]:IEEE, 2005:424-429.
    [35] WANG R, LOFFELD O, NEO Y L, et al. Focusing bistatic SAR data in airborne/stationary configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1):452-465.
    [36] GOH A S, PREISS M, STACY N J S, et al. Bistatic SAR experiment with the Ingara imaging radar:Preliminary results[C]//20087th European Conference on Synthetic Aperture Radar (EUSAR).[S.l.]:VDE, 2008:1-4.
    [37] CAZZANI L, COLESANTI C, LEVA D. A ground-based parasitic SAR experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2132-2141.
    [38] SANZ-MARCOS J, LOPEZ-DEKKER P, MALLORQUI J J, et al. SABRINA:a SAR bistatic receiver for interferometric applications[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2):307-311.
    [39] ENDER J H G. Signal theoretical aspects of bistatic SAR[C]//International Geoscience and Remote Sensing Symposium.[S.l.]:[s.n.], 2003.
    [40] WALTERSCHEID I, ENDER J H G, BRENNER A R, et al. Bistatic SAR Processing and Experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44:2710-2717.
    [41] GIRARD R, LEE P F, JAMES K. The RADARSAT-2&3 topographic mission:an overview[C]//Geoscience and Remote Sensing Symposium. IGARSS'02.[S.l.]:IEEE, 2002.
    [42] MARTIN M, KLUPAR P, KILBERG S, et al. TechSat 21 and revolutionizing space missions using microsatellites[C]//Proc Aiaa/usu Conference on Small Satellites.[S.l.]:[s.n.], 2001.
    [43] WANG R, DENG Y, ZHANG Z, et al. Double-channel bistatic SAR system with spaceborne illuminator for 2-D and 3-D SAR remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8):4496-4507.
    [44] SHAO Y F, WANG R, DENG Y K, et al. Digital elevation model reconstruction in multichannel spaceborne/stationary SAR interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12):2080-2084.
    [45] BALKE J. Bistatic forward-looking synthetic aperture radar[C]//IEEE International Radar Conference.[S.l.]:IEEE, 2005.
    [46] BALKE F. Field test of bistatic forward-looking synthetic aperture radar[C]//IEEE International Radar Conference.[S.l.]:IEEE, 2005:424-429.
    [47] BALKE J, MATTHES D, MATHY T. Illumination constraints for forward-looking radar receivers in bistatic SAR geometries[C]//Radar Conference, EuRAD 2008. European:IEEE, 2008:25-28.
    [48] BALKE J. SAR image formation for forward-looking radar receivers in bistatic geometry by airborne illumination[C]//2008 IEEE Radar Conference.[S.l.]:IEEE, 2008:1-5.
    [49] GIERULL C H. Bistatic synthetic aperture radar:TIF report (phase I)[C]//Technical Report. Canada, Ottawa:Defence R&D, 2004.
    [50] MURRAY M. Taking reconnaissance to another level[R].[S.l.]:Sandia National Laboratories, 2004.
    [51] WALTERSCHEID I, PAPKE B. Bistatic forward-looking SAR imaging of a runway using a compact receiver on board an ultralight aircraft[C]//201314th International Radar Symposium (IRS).[S.l.]:IEEE, 2013.
    [52] HU C, ZENG T, LONG T, et al. Forward-Looking Bistatic SAR Range Migration Alogrithm[C]//2006 CIE International Conference on Radar.[S.l.]:IEEE, 2006:1-4.
    [53] SUN J, LV Y, WEN H, et al. The Polar Format Imaging Algorithm for Forward-looking Bistatic SAR[C]//20087th European Conference on Synthetic Aperture Radar (EUSAR).[S.l.]:VDE, 2008:1-4.
    [54] QIU X, HU D, DING C. Some reflections on bistatic sar of forward-looking configuration[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4):735-739.
    [55] WU J, YANG J, HUANG Y, et al. Bistatic forward-looking SAR:Theory and challenges[C]//2009 IEEE Radar Conference.[S.l.]:IEEE, 2009:1-4.
    [56] WU J, LI Z, HUANG Y, et al. Focusing bistatic forward-looking SAR with stationary transmitter based on keystone transform and nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):148-152.
    [57] LI Z, YAO D, LONG T. SPECAN algorithm for forwardlooking bistatic SAR[C]//20089th International Conference on Signal Processing.[S.l.]:IEEE, 2008:2517-2520.
    [58] YANG Jian-yu, HUANG Yu-lin, YANG Hai-guang, et al. A first experiment of airborne bistatic forward-looking sar preliminary results[C]//IEEE International Geoscience and Remote Sensing Symposium.[S.l.]:IEEE, 2013.
    [59] GROMEK D, KULPA K, SAMCZYŃSKI P. Experimental results of passive sar imaging using DVB-T illuminators of opportunity[J]. IEEE Geoscience and Remote Sensing Letters, 2016, (99):1-5.
    [60] ULANDER L M H, FRÖLIND P O, GUSTAVSSON A. VHF/UHF bistatic and passive SAR ground imaging[C]//2015 IEEE Radar Conference (RadarCon).[S.l.]:IEEE, 2015.
    [61] ANTONIOU M, CHERNIAKOV M. Experimental demonstration of passive GNSS-based SAR imaging modes[C]//Radar Conference 2013.[S.l.]:IET International. 2013.
  • [1] 高乐, 毕东杰, 彭礼彪, 谢永乐.  基于GAMP的近场毫米波成像快速算法 . 电子科技大学学报, 2019, 48(2): 168-173. doi: 10.3969/j.issn.1001-0548.2019.02.002
    [2] 罗时雨, 童玲, 陈彦.  基于参数化模型的水平集SAR图像多区域分割方法 . 电子科技大学学报, 2016, 45(6): 939-943. doi: 10.3969/j.issn.1001-0548.2016.06.011
    [3] 黄平平, 邓云凯, 徐伟.  基于CS算法的MIMO-SAR成像研究 . 电子科技大学学报, 2012, 41(2): 222-226. doi: 10.3969/j.issn.1001-0548.2012.02.010
    [4] 樊勇, 徐嘉莉, 周正欧.  前视探地雷达三维合成孔径成像及多视处理 . 电子科技大学学报, 2010, 39(1): 6-10. doi: 10.3969/j.issn.1001-0548.2010.01.002
    [5] 任笑真, 杨汝良.  机载前视SAR三维成像原理及分辨率分析 . 电子科技大学学报, 2010, 39(5): 706-710,724. doi: 10.3969/j.issn.1001-0548.2010.05.013
    [6] 樊勇, 周正欧, 徐嘉莉.  前视探地雷达波速估计及合成孔径成像研究 . 电子科技大学学报, 2009, 38(4): 517-520. doi: 10.3969/j.issn.1001-0548.2009.04.010
    [7] 曹宗杰, 庞伶俐, 皮亦鸣.  融合区域和边界信息的水平集SAR图像分割方法 . 电子科技大学学报, 2008, 37(3): 325-327,353.
    [8] 毛勇, 阮成礼.  相对运动多目标的逆合成孔径雷达成像 . 电子科技大学学报, 2008, 37(4): 541-544.
    [9] 李源, 刘建新, 蔡英武.  逆合成孔径雷达的干扰仿真 . 电子科技大学学报, 2006, 35(1): 9-12.
    [10] 甘荣兵, 王建国.  改进的对星载SAR的应答式欺骗干扰 . 电子科技大学学报, 2005, 34(5): 614-617.
    [11] 韩春林, 雷飞, 王建国, 向敬成.  合成孔径雷达图像目标分类研究 . 电子科技大学学报, 2004, 33(1): 1-4.
    [12] 邹琪, 皮亦鸣, 黄顺吉.  极化SAR图像的多纹理最大似然估计 . 电子科技大学学报, 2001, 30(2): 120-123.
    [13] 梁淮宁, 余永健, 黄顺吉.  一种新的合成孔径雷达三维成像方法 . 电子科技大学学报, 2001, 30(1): 5-8.
    [14] 韩春林, 赵志钦, 王建国.  不同小波基下的SAR图像相干斑抑制性能分析 . 电子科技大学学报, 2000, 29(6): 578-582.
    [15] 赵志钦, 王建国, 黄顺吉.  SAR图像的边沿检测方法研究 . 电子科技大学学报, 2000, 29(3): 225-228.
    [16] 汤志伟, 赵志钦, 黄顺吉.  SAR原始数据的模拟研究 . 电子科技大学学报, 2000, 29(1): 17-19.
    [17] 张晓玲, 王建国, 黄顺吉.  一种二维INSAR解相位模糊方法研究 . 电子科技大学学报, 1999, 28(1): 6-9.
    [18] 赵志钦, 王建国, 黄顺吉.  合成孔径雷达的点目标模拟研究 . 电子科技大学学报, 1999, 28(5): 471-475.
    [19] 林水生, 黄顺吉.  一种合成孔径雷达成像处理的并行算法 . 电子科技大学学报, 1998, 27(1): 1-4.
    [20] 郑伟强, 赵志钦, 黄顺吉.  合成孔径雷达极坐标数据编码器 . 电子科技大学学报, 1997, 26(1): 21-23.
  • 加载中
计量
  • 文章访问数:  4480
  • HTML全文浏览量:  368
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-08-15

双基地合成孔径雷达技术

  • 中图分类号: TN95

摘要: 双基地合成孔径雷达(SAR)系统的发射和接收装置承载于不同的平台,系统配置灵活多样,接收装置适装性强,电磁隐蔽性好,不仅能实现对地侧视成像,还能够实现前视成像,是SAR技术新的发展方向之一。由于双基SAR在几何构型、工作模式、分辨特性和应用领域等方面与传统单基SAR存在明显差异,在成像理论、系统组成、收发同步、参数估计、运动补偿、成像处理和试验验证等方面,双基地SAR也存在一系列新的理论、方法和技术问题。近年来,国际雷达界对这些问题开展了广泛深入的研究工作,获得了一些新的认识。该文拟从空间关系和物理概念角度,论述双基SAR成像原理、构型分类、应用特点、系统组成、性能参数、研究现状和发展趋势,简要分析双基SAR与单基SAR的异同,并对双基SAR未来的发展趋势做简要的展望。

English Abstract

杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4): 482-501.
引用本文: 杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4): 482-501.
YANG Jian-yu. Bistatic Synthetic Aperture Radar Technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482-501.
Citation: YANG Jian-yu. Bistatic Synthetic Aperture Radar Technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482-501.
参考文献 (61)

目录

    /

    返回文章
    返回