留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GaN-FET大功率、超低功耗移相器设计

来晋明 马晓华 王海龙 王超杰 李志友

来晋明, 马晓华, 王海龙, 王超杰, 李志友. 基于GaN-FET大功率、超低功耗移相器设计[J]. 电子科技大学学报, 2023, 52(2): 209-213. doi: 10.12178/1001-0548.2021208
引用本文: 来晋明, 马晓华, 王海龙, 王超杰, 李志友. 基于GaN-FET大功率、超低功耗移相器设计[J]. 电子科技大学学报, 2023, 52(2): 209-213. doi: 10.12178/1001-0548.2021208
LAI Jinming, MA Xiaohua, WANG Hailong, WANG Chaojie, LI Zhiyou. Design of GaN-FET Phase Shifter with High Power Handling Capability and Ultra-Low DC Power Consumption[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(2): 209-213. doi: 10.12178/1001-0548.2021208
Citation: LAI Jinming, MA Xiaohua, WANG Hailong, WANG Chaojie, LI Zhiyou. Design of GaN-FET Phase Shifter with High Power Handling Capability and Ultra-Low DC Power Consumption[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(2): 209-213. doi: 10.12178/1001-0548.2021208

基于GaN-FET大功率、超低功耗移相器设计

doi: 10.12178/1001-0548.2021208
详细信息
    作者简介:

    来晋明(1982 – ),男,博士,高级工程师,主要从事射频收发组件、大功率发射等方面的研究

    通讯作者: 来晋明,E-mail:187291637@qq.com
  • 中图分类号: TN710

Design of GaN-FET Phase Shifter with High Power Handling Capability and Ultra-Low DC Power Consumption

  • 摘要: 提出了一种基于支节加载GaN-FET的大功率、低插损、超低功耗移相器。该移相器的核心电路由多节高阻抗微带支节线以及支节末端加载的GaN-FET管芯构成。通过对单支节加载GaN-FET移相器电路模型的详细分析,得到了移相器的插损和相移表达式,并将其作为基本单元进行拓展可得到满足所需工作带宽的多支节加载GaN-FET移相器。由于采用了高阻抗微带线支节,该移相器具有大功率处理能力。结合理论分析,对多支节加载GaN-FET移相器进行了设计、加工和测试。测试结果表明,所加工的移相器在9.2~9.8 GHz范围内,通过控制GaN FET的关断实现了30°和60°两种相移状态。同时,移相器功率承受能力大于10 W,插损优于1 dB,控制电流小于6 μA。
  • 图  1  GaN-FET型低功耗大功率移相器电路结构

    图  2  GaN-FET单支节加载移相器

    图  3  大功率移相器电路版图

    图  4  移相器移相30°时插损和寄生调幅仿真结果

    图  5  移相器移相60°时插损和寄生调幅仿真结果

    图  6  基于GaN-FET大功率移相器实物

    图  7  移相器移相30°时插损和寄生调幅测试结果

    图  8  移相器移相60°时插损和寄生调幅测试结果

    图  9  移相器相位和幅度均方根方差

    表  1  与已报道移相器的性能对比

    方法频率/GHz相移/(°)IL/dB功耗
    /mW
    功率容量
    /dBm
    文献[8]11.7~12.222.5/45/90/1801.83629
    文献[10]9~10.311/221.2100N/G
    文献[11]6~18
    15~26
    22.5/45/90/1802.1
    4.6
    8.7
    11.7
    −6.7
    −1.9
    文献[12]8~1222.52未给出38
    本文9.2~9.830/6010.1740
    下载: 导出CSV
  • [1] 吕海涛. SAR雷达模拟成像技术研究[J]. 舰船电子工程, 2010, 30(5): 70-73. doi:  10.3969/j.issn.1627-9730.2010.05.018

    LYU H T. Research on SAR radar analog imaging technology[J]. Naval Electronics Engineering, 2010, 30(5): 70-73. doi:  10.3969/j.issn.1627-9730.2010.05.018
    [2] XU H P, XIAO Z Y, GAO J, et al. A novel wavenumber domain SAR imaging algorithm based on the fractional fourier transform[J]. Chinese Journal of Electronics, 2014, 23(4): 866-870.
    [3] ANDREAS R B, LUDWIG R. Radar imaging of urban areas by means of very high-resolution SAR and interferometric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 2971-2982. doi:  10.1109/TGRS.2008.920911
    [4] CEREOLI L, TORRE A. The role of performance modelling in active phased array SAR[C]//IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE, 2007: 1569-1572.
    [5] LEONARDO F Y, DAVID H C, MIGUEL A A, et al. Hybrid sparse linear array synthesis applied to phased antenna arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 185-188.
    [6] LUDWIG M, FELDLE H P, OTT H. A miniaturised X-band T/R-module for SAR-systems based on active phased array techniques[C]//IEEE International Geoscience and Remote Sensing Symposium. Firenze: IEEE, 1995, 3: 2063-2065.
    [7] 邓广健, 黄文华, 巴涛, 等. 高功率铁氧体移相器的设计与实验研究[J]. 现代应用物理, 2016, 7(3): 030501(1)-030501(6).

    DENG G J, HUANG W H, BA T, et al Design and experimental study of high power ferrite phase shifter[J]. Modern Applied Physics, 2016, 7 (3): 030501(1)-030501(6).
    [8] GLANCE B, AMITAY W. A fast switching, low loss, low drive, 12 GHz pin phase shifter[C]//IEEE MTT-S International Microwave Symposium Digest. Orlando: IEEE, 1979: 232-234.
    [9] SRINIVASA P, KUMAR S A, SHARMA A, et al. Design of a novel S band dual mode low loss high power PIN diode phase shifter with planar folded dipole configuration[C]//IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems. TelAviv: IEEE, 2011: 1-4.
    [10] SUN X, FERNÁNDEZ-GONZÁLEZ J, SIERRA-PÉREZ M, et al. Low-Loss loaded line phase shifter for radar application in X band[C]//European Radar Conference. Madrid: IEEE, 2018: 477-480.
    [11] KOH K J, REBEIZ G M. 0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays[J]. IEEE Journal of Solid-State Circuits, 2007, 42(11): 2535-2546. doi:  10.1109/JSSC.2007.907225
    [12] ROSS T N, CORMIER G, HETTAK K, et al. High-power X-band GaN switched-filter phase shifter[C]//IEEE MTT-S International Microwave Symposium Digest. Tampa: IEEE, 2014: 1-4.
    [13] 伍文俊, 兰雪梅. GaN FET的结构、驱动及应用综述[J]. 电子技术应用, 2020, 46(1): 22-29, 38.

    WU W J, LAN X M. Overview of the structure, drive and application of GaN FET[J]. Electronic Technology Application, 2020, 46(1): 22-29, 38.
    [14] CARROLL J M. Using GaN FETs for high power RF switches[C]//IEEE Compound Semiconductor Integrated Circuits Symposium Digest. Monterey: IEEE, 2008: 1-4.
    [15] 喻梦霞, 李桂萍. 微波固态电路[M]. 成都: 电子科技大学出版社, 2008.

    YU M X, LI G P. Microwave solid state circuit[M]. Chengdu: University of Electronic Science and Technology Press, 2008.
    [16] DAVID M P. 微波工程[M]. 第四版. 北京: 电子工业出版社, 2019.

    DAVID M P. Microwave engineering [M]. The 4th ed. Beijing: Electronic Industry Press, 2019.
  • [1] 吴子锐, 杨之蒙, 蒲晓蓉, 徐杰, 曹晟, 任亚洲.  面向特征生成的无监督域适应算法 . 电子科技大学学报, 2022, 51(4): 580-585, 607. doi: 10.12178/1001-0548.2021314
    [2] 韦顺军, 张晓玲, 师君, 蒲羚.  基于最大锐度半正定规划的线阵SAR自聚焦三维成像 . 电子科技大学学报, 2019, 48(1): 1-7. doi: 10.3969/j.issn.1001-0548.2019.01.001
    [3] 汪昌思, 徐跃杭, 闻彰, 陈志凯, 赵晓冬, 徐锐敏.  微波场板GaN HEMTs大信号特性及其模型研究 . 电子科技大学学报, 2017, 46(3): 485-491. doi: 10.3969/j.issn.1001-0548.2017.03.002
    [4] 李财品, 何明一.  地球同步轨道SAR凝视成像变脉冲重复频率技术 . 电子科技大学学报, 2016, 45(6): 917-922. doi: 10.3969/j.issn.1001-0548.2016.06.007
    [5] 梁颖, 张群, 杨秋, 孙莉, 李治安.  基于FMCW的弹载SAR俯冲成像方法研究 . 电子科技大学学报, 2015, 44(5): 668-673. doi: 10.3969/j.issn.1001-0548.2015.05.005
    [6] 杨海光, 易青颖, 李中余, 武俊杰, 黄钰林, 杨建宇.  临近空间慢速平台SAR地面动目标检测与成像 . 电子科技大学学报, 2014, 43(6): 838-844. doi: 10.3969/j.issn.1001-0548.2014.06.008
    [7] 黄平平, 邓云凯, 徐伟.  基于CS算法的MIMO-SAR成像研究 . 电子科技大学学报, 2012, 41(2): 222-226. doi: 10.3969/j.issn.1001-0548.2012.02.010
    [8] 郑文军, 赵志钦, 张薇, 聂在平.  超宽带探地雷达中TRM-SAR成像技术研究 . 电子科技大学学报, 2011, 40(3): 363-366. doi: 10.3969/j.issn.1001-0548.2011.03.006
    [9] 张德祥, 吴小培, 高清维, 郭晓静.  基于平稳Contourlet变换的极化SAR图像融合 . 电子科技大学学报, 2010, 39(2): 200-203. doi: 10.3969/j.issn.1001-0548.2010.02.010
    [10] 李廷军, 孔令讲, 周正欧.  探地雷达横向等效变波速SAR成像算法研究 . 电子科技大学学报, 2010, 39(1): 16-20. doi: 10.3969/j.issn.1001-0548.2010.01.004
    [11] 任笑真, 杨汝良.  机载前视SAR三维成像原理及分辨率分析 . 电子科技大学学报, 2010, 39(5): 706-710,724. doi: 10.3969/j.issn.1001-0548.2010.05.013
    [12] 刘光炎, 孟喆, 胡学成.  非均匀采样SAR信号的不模糊重构与成像 . 电子科技大学学报, 2010, 39(6): 850-853,858. doi: 10.3969/j.issn.1001-0548.2010.06.010
    [13] 赵志钦, 骆小谚, 聂在平.  利用双尺度模型的海浪极化SAR成像模拟 . 电子科技大学学报, 2009, 38(5): 651-655. doi: 10.3969/j.issn.1001-0548.2009.05.024
    [14] 杜江锋, 赵金霞, 伍捷, 杨月寒, 武鹏, 靳翀, 陈卫.  具有场板结构GaN HEMT电场分布解析模型 . 电子科技大学学报, 2008, 37(2): 297-300.
    [15] 徐三元, 王建国.  改进的大斜视角SAR阶梯变换算法 . 电子科技大学学报, 2006, 35(1): 5-8.
    [16] 闵锐, 姚刚, 周非, 黄顺吉.  双站SAR系统的信号分析 . 电子科技大学学报, 2006, 35(6): 905-908.
    [17] 严中, 吕幼新, 姒强.  用GaAs FET实现宽带有源倍频链技术研究 . 电子科技大学学报, 2006, 35(4): 474-477.
    [18] 范馨月, 皮亦鸣, 付毓生, 周非, 李振.  利用SPECAN算法的聚束SAR成像处理 . 电子科技大学学报, 2005, 34(2): 145-147,209.
    [19] 赵志钦, 王建国, 黄顺吉.  SAR图像的边沿检测方法研究 . 电子科技大学学报, 2000, 29(3): 225-228.
    [20] 汤志伟, 赵志钦, 黄顺吉.  SAR原始数据的模拟研究 . 电子科技大学学报, 2000, 29(1): 17-19.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  4185
  • HTML全文浏览量:  1497
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-03
  • 修回日期:  2022-12-01
  • 网络出版日期:  2023-04-03
  • 刊出日期:  2023-03-28

基于GaN-FET大功率、超低功耗移相器设计

doi: 10.12178/1001-0548.2021208
    作者简介:

    来晋明(1982 – ),男,博士,高级工程师,主要从事射频收发组件、大功率发射等方面的研究

    通讯作者: 来晋明,E-mail:187291637@qq.com
  • 中图分类号: TN710

摘要: 提出了一种基于支节加载GaN-FET的大功率、低插损、超低功耗移相器。该移相器的核心电路由多节高阻抗微带支节线以及支节末端加载的GaN-FET管芯构成。通过对单支节加载GaN-FET移相器电路模型的详细分析,得到了移相器的插损和相移表达式,并将其作为基本单元进行拓展可得到满足所需工作带宽的多支节加载GaN-FET移相器。由于采用了高阻抗微带线支节,该移相器具有大功率处理能力。结合理论分析,对多支节加载GaN-FET移相器进行了设计、加工和测试。测试结果表明,所加工的移相器在9.2~9.8 GHz范围内,通过控制GaN FET的关断实现了30°和60°两种相移状态。同时,移相器功率承受能力大于10 W,插损优于1 dB,控制电流小于6 μA。

English Abstract

来晋明, 马晓华, 王海龙, 王超杰, 李志友. 基于GaN-FET大功率、超低功耗移相器设计[J]. 电子科技大学学报, 2023, 52(2): 209-213. doi: 10.12178/1001-0548.2021208
引用本文: 来晋明, 马晓华, 王海龙, 王超杰, 李志友. 基于GaN-FET大功率、超低功耗移相器设计[J]. 电子科技大学学报, 2023, 52(2): 209-213. doi: 10.12178/1001-0548.2021208
LAI Jinming, MA Xiaohua, WANG Hailong, WANG Chaojie, LI Zhiyou. Design of GaN-FET Phase Shifter with High Power Handling Capability and Ultra-Low DC Power Consumption[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(2): 209-213. doi: 10.12178/1001-0548.2021208
Citation: LAI Jinming, MA Xiaohua, WANG Hailong, WANG Chaojie, LI Zhiyou. Design of GaN-FET Phase Shifter with High Power Handling Capability and Ultra-Low DC Power Consumption[J]. Journal of University of Electronic Science and Technology of China, 2023, 52(2): 209-213. doi: 10.12178/1001-0548.2021208
  • 合成孔径雷达(synthetic aperture radar, SAR)已在战场态势感知、国土普查、环境监测以及灾害评估等领域得到了广泛应用,其中高分辨率SAR是当前研究的热点[1-3]。因平面有源相控阵具备天线增益高、波束灵活可控及宽角扫描等技术特点,是实现高分辨率SAR的主流技术方案[4]。由于大规模平面有源相控阵存在成本高、结构复杂及散热难的缺点,可通过对天线阵面有源馈电网络中的T/R组件进行稀疏布局来改善。然而,简单的稀疏布阵会导致天线波束栅瓣的产生和增益的下降,这时可在稀疏子阵列内采用相位扰动技术以降低天线波束的栅瓣电平并提高增益[5]。为对稀疏阵列信号进行相位扰动,可在天线与TR组件之间的馈电网络中安装扰动移相器。根据相控阵系统的需求以及安装位置,扰动移相器必须具备高功率承受能力、小型化、低差损、低功耗的特性[6]

    射频信号的移相方式包括改变信号传输的相位常数、信号传输线的长度以及信号传输网络的传输特性[7-12]。文献[7]中铁氧体移相器通过改变外加电场来改变信号的传播相位常数的方式以实现射频信号的相移。但该类移相器的体积较大,不利于系统集成。对于文献[8]中提出的基于PIN开关线型移相器则是利用开关切换改变信号的传输线长度以实现移相的目的。由于PIN管串联在传输路径中,该类移相器的功率承受能力较低,插损大,直流功耗高。为实现大功率、低插损移相器,文献[9-10]提出了基于PIN管的支节加载移相器。通过控制PIN管的通断可以改变射频信号的传输网络特性,但在切换移相状态时响应速度较慢,PIN二级管的驱动电流致使直流功耗较大。相较于传统的PIN管,GaN FET作为功率器件,具有高击穿电压、低阈值电压、低的栅极电荷Qg,其开关频率高,导通电阻小,能够承受大功率信号[12-14]。小导通电阻能使GaN-FET型移相器实现低功耗特性。由于GaN-FET属于电压驱动型晶体管,采用GaN FET设计移相器能够有效降低大规模相控阵系统的功耗、体积,并具有承受大功率的特性。因此,GaN-FET型移相器受到学者的关注并得以发展[11]

    本文提出了一款基于GaN-FET支节加载大功率移相器,由2 bit控制位对移相状态进行切换。通过改变GaN FET的栅极电压实现GaN-FET开关的导通和关断,从而改变信号的传输网络相移特性。结合系统需求,本文设计的移相器工作在9.2~9.8 GHz,能够实现30°/60°两种移相状态。与传统的大功率移相器相比,本文的GaN-FET型移相器还具备超低功耗、快速切换、低插损的优势,并且该移相器可通过利用MMIC技术进一步小型化,以期满足小型化电路系统的应用需求。

    • 为了实现基于GaN-FET开关的低功耗、大功率移相器,图1给出了两支节加载移相器的电路结构,并以此作为基本单元进行扩展为多支节加载移相器。两支节加载移相器是由特性阻抗为Z0的微带传输线、特性阻抗为Z1并联高阻抗微带支节以及末端加载的GaN-FET组成。通过控制GaN-FET开关的导通或者关断来改变整个电路结构的传输网络特性,从而实现对射频信号相位的改变。

      图  1  GaN-FET型低功耗大功率移相器电路结构

    • 由于GaN-FET在导通状态时呈低阻状态(等效为小于Ron = 2 Ω的电阻),而在截止状态时呈高阻状态(可等效为小于COFF = 0.1 pF的电容)的特性[13],因此可用线性等效模型简化分析支节加载移相器的传输网络特性,获得满足工作带宽的相移量,GaN-FET单支节加载如图2所示。

      图  2  GaN-FET单支节加载移相器

      文献[15]已对两支节加载线移相器进行了详细分析,但结果过于复杂,实际设计过程中只能通过查找图形曲线的方式得到粗略的结果。为简化两支节加载移相器的设计,本文对末端加载GaN-FET单支节加载基本电路单元进行了分析并给出了相应的设计公式。利用公式便可得到多支节加载移相器的初始尺寸,后续便可结合高频仿真软件HFSS进行建模优化获得满足指标要求的移相器。

      根据图2所示的单支节加载GaN-FET移相器电路结构并结合ABCD矩阵与S参数的转换关系,其传输网络的S参数矩阵中的S21可表示为[16]

      $$ {S_{21}} = \frac{2}{{\left( {2 + {Z_0}Y} \right)\left( {{\text{cos}}\left( {2\beta L} \right) + {\rm{j}}{\text{sin}}\left( {2\beta L} \right)} \right)}} $$ (1)

      式中,Z0为微带传输线的特性阻抗;L为微带传输线的长度;Y为从并联高阻抗微带传输线向GaN-FET看过去的输入导纳;β为微波信号的传播常数。当GaN-FET处于截止状态时,从并联高阻抗微带传输线看过去的输入导纳近似为:

      $$ Y = {\rm{j}}{Y_1}\tan \left( {\beta {L_{\text{1}}}} \right) $$ (2)

      式中,Y1=1/Z1为并联高阻抗微带传输线的特性导纳。此时传输网络的传输参数为:

      $$ S_{21}' = \frac{{{\text{2cos}}\left( {2\beta L} \right) - j2{\text{sin}}\left( {2\beta L} \right)}}{{2 + {\rm{j}}{Z_0}{{{Y}}_1}{\text{cot}}\left( {\beta {L_1}} \right)}} $$ (3)

      当GaN-FET处于导通状态时,从并联高阻抗微波传输线看过去的输入导纳Y为:

      $$ Y = - {\rm{j}}{Y_1}{\text{cot}}\left( {\beta {L_1}} \right) $$ (4)

      此时传输网络的传输参数为:

      $$ S_{21}^{''} = \frac{{{\text{2cos}}\left( {2\beta L} \right) - {\text{j}}2{\text{sin}}\left( {2\beta L} \right)}}{{2 - {\text{j}}{Z_0}{Y_1}{\text{cot}}\left( {\beta {L_1}} \right)}} $$ (5)

      此处定义IL为单支节加载移相器的插损,Δθ为相移量,ΔM为寄生调幅。则由式(1)~式(5)可得单支节加载移相器的插损、相移量以及寄生调幅为:

      $$ {\text{IL}} = 20{\text{log}}\frac{1}{{\sqrt {1 + {{\left( {\dfrac{{{Z_0}}}{{2{Z_1}}}{\text{tan}}\left( {\beta {L_1}} \right)} \right)}^2}} }} $$ (6)
      $$ {{\Delta }}\theta = {\text{arcot}}\left\{ {\frac{{{Z_{\text{0}}}}}{{2{Z_{\text{1}}}}}{\text{cot}}\left( {\beta {L_{\text{1}}}} \right)} \right\} + {\text{arctan}}\left\{ {\frac{{{Z_{\text{0}}}}}{{2{Z_{\text{1}}}}}\tan \left( {\beta {L_{\text{1}}}} \right)} \right\} $$ (7)
      $$ {{\Delta }}M = 20\log \sqrt {\frac{{{\text{1}} + {{\left\{ {\dfrac{{{Z_{\text{0}}}}}{{2{Z_{\text{1}}}}}{\text{cot(}}\beta {L_{\text{1}}}{\text{)}}} \right\}}^{\text{2}}}}}{{{{\left( {\dfrac{{{Z_{\text{0}}}}}{{{\text{2}}{Z_{\text{1}}}}}} \right)}^{\text{2}}} + {{\left\{ {{\text{cot}}\left( {\beta {L_{\text{1}}}} \right)} \right\}}^{\text{2}}}}}} $$ (8)

      由式(8)可知,取βL1=π/4时,ΔM=0,此时移相器的插损IL、相移量Δθ分别为:

      $$ {\text{I}}{{\text{L}}_{(\beta {L_1} = \tfrac{{\text{π}}}{4})}} = 20\log \frac{1}{{\sqrt {1 + {{\left( {\dfrac{{{Z_0}}}{{2Z{}_1}}} \right)}^2}} }} $$ (9)
      $$ \Delta {\theta _{(\beta {L_1} = \tfrac{{\text{π}}}{4})}} = 2{\text{arcot}}\left( {\frac{{{Z_0}}}{{2{Z_1}}}} \right) $$ (10)

      由式(9)和式(10)可知,当βL1=π/4时,移相器插损和相移量由微带主传输线特性阻抗Z0和并联高阻抗支节加载线的特性阻抗Z1决定。

      综上所述,根据移相器的工作频段可以计算出并联高阻抗微带传输线的长度L1,由单支节加载移相器的插损和相移量表达式,可综合出给定插损和相移量的支节加载传输线的数量和并联高阻抗支节加载线的特性阻抗Z1

    • 根据某SAR系统的实际需求,本文研究的扰动移相器技术指标为:工作频段为9.2~9.8 GHz,插损优于0.8 dB,相移量为30°和60°可选,承受功率大于10 W,控制电流小于10 μA。

      根据技术指标并结合单支节加载移相器的综合公式,本次移相器设计确定采用6支节加载线结构,介质基板采用介电常数为9.8、厚度为0.254 mm的Al2O3陶瓷基片。图3为所提出的大功率移相器的版图,其中开关S1S6由GaN-FET实现,通过控制电压V1V2可以实现30°和60°相移状态的切换。当V1控制开关S1S2S3处于导通状态,V2控制开关S4S5S6处于关断状态时,移相器可以实现30°的相移;当V1V2控制开关S1S6均处于导通状态时,移相器可以实现60°的相移。为了能够承受10 W的输入功率,并联支节特性阻抗Z1选取为100 Ω,其相关尺寸L3L4L5约等于中心频率9.5 GHz处的四分之一波长。通过对L3L4L5的失谐调节,以满足所需工作带宽内的相移量。

      图  3  大功率移相器电路版图

      而微带主传输线的特性阻抗Z0选为50 Ω,其相关尺寸L1L2需进行优化以获得良好的输入输出驻波。本文提出的大功率移相器采用高频仿真软件HFSS进行建模仿真设计。

      为了简化移相器的电路结构,将GaN-FET开关导通时等效为2 Ω电阻,截止时等效为0.1 pF电容,则可得到移相器在两种移相状态下的仿真结果如图4图5所示。当开关S1S2S3处于导通, S4S5S6处于关断时,图4显示移相器的移相精度变化范围为33±2.5°,插损小于0.7 dB,移相寄生调幅小于0.1 dB。当开关S1S6均处于导通时,图5显示移相器的移相精度变化范围为65±5°,插损小于0.8 dB,移相寄生调幅小于0.2 dB。此时仿真结果与给定相移指标相比有一定偏差,这与GaN-FET的等效电路模型有关,后续可通过对加工实物进行调试纠正,以满足技术指标。

      图  4  移相器移相30°时插损和寄生调幅仿真结果

      图  5  移相器移相60°时插损和寄生调幅仿真结果

    • 图6为采用薄膜技术制造的大功率移相器实物,所用的GaN-FET开关为裸芯,利用导电银浆粘接在陶瓷基片上。所有的陶瓷基片包括移相器电路、GaN-FET控制电路也利用导电银浆粘接于腔体底部。

      图  6  基于GaN-FET大功率移相器实物

      大功率移相器的GaN-FET开关控制信号V1V2采用0 V/−28 V,其中−28 V偏置电流小于6 μA。GaN-FET开关在−28 V时处于截止状态,在0 V时处于导通状态。因此,当V1 = 0 V、V2 = −28 V时,移相器可实现30°的移相状态;当V1 = V2 = 0 V时,移相器可实现60°的移相状态。图7图8给出了大功率移相器在9.2~9.8 GHz范围内经调试后的测试结果。由图7可知在30°移相状态时,移相器的相移精度变化范围为−32±1.5°,未进行移相时的初始插损小于−0.75 dB,移相寄生调幅小于0.25 dB。在60°移相状态时,移相器的相移精度变化范围为73±3°,未进行移相时的初始插损小于−0.9 dB,移相寄生调幅小于0.2 dB。虽然所设计的移相器与给定的技术指标存在一定的偏差,但不影响在SAR系统中的使用。

      图  7  移相器移相30°时插损和寄生调幅测试结果

      图  8  移相器移相60°时插损和寄生调幅测试结果

      相位均方根方差θΔ,RMS和幅度均方根误差AΔ,RMS通常被用来衡量移相器的性能优劣,其表达式分别为[10]

      $$ {\theta _{\Delta ,{\text{RMS}}}} = \sqrt {\frac{1}{{N - 1}}\sum\limits_{i = 2}^N {{{\left| {{\theta _{\Delta i}}} \right|}^2}} } $$ (11)
      $$ {A_{\Delta ,{\text{RMS}}}} = \sqrt {\frac{1}{N}\sum\limits_{i = 1}^N {{{\left| {{A_{\Delta i}}} \right|}^2}} } $$ (12)

      式中,N为移相状态数量;θΔi为第i种移相状态的实际相移量与理想相移量的差值;AΔi为第i种移相状态的插损与该种移相状态的插损均值的差值。由图78和式(11)、式(12)可计算出θΔ,RMSAΔ,RMS,如图9所示。该移相器在整个频率范围内的相位均方根方差为8°~10.8°,幅度均方根误差小于0.45 dB。表1给出了所提出移相器与已有移相器的指标对比。由表中可以看出,所提出的GaN-FET移相器具有最优的功耗、插损、功率容量性能。

      图  9  移相器相位和幅度均方根方差

      表 1  与已报道移相器的性能对比

      方法频率/GHz相移/(°)IL/dB功耗
      /mW
      功率容量
      /dBm
      文献[8]11.7~12.222.5/45/90/1801.83629
      文献[10]9~10.311/221.2100N/G
      文献[11]6~18
      15~26
      22.5/45/90/1802.1
      4.6
      8.7
      11.7
      −6.7
      −1.9
      文献[12]8~1222.52未给出38
      本文9.2~9.830/6010.1740
    • 本文对以传统传输线加载移相器为基础的电路单元进行了详细的理论分析,创造性地采用GaN-FET管芯实现了超低功耗、低插损的大功率移相器,实测结果与仿真结果相一致,验证了所提设计方法的可行性和实用性。文中采用的设计方法可广泛应用在大功率低功耗移相器的设计中,具有一定的工程应用价值。

参考文献 (16)

目录

    /

    返回文章
    返回