留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石英增强光声光谱技术发展现状

王亚非 刘丽娴 高椿明 卢泽宇 周鹰

王亚非, 刘丽娴, 高椿明, 卢泽宇, 周鹰. 石英增强光声光谱技术发展现状[J]. 电子科技大学学报, 2015, 44(6): 940-945. doi: 10.3969/j.issn.1001-0548.2015.06.025
引用本文: 王亚非, 刘丽娴, 高椿明, 卢泽宇, 周鹰. 石英增强光声光谱技术发展现状[J]. 电子科技大学学报, 2015, 44(6): 940-945. doi: 10.3969/j.issn.1001-0548.2015.06.025
WANG Ya-fei, LIU Li-xian, GAO Chun-ming, LU Ze-yu, ZHOU Ying. Review of Quartz Enhanced Photoacoustic Spectroscopy[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(6): 940-945. doi: 10.3969/j.issn.1001-0548.2015.06.025
Citation: WANG Ya-fei, LIU Li-xian, GAO Chun-ming, LU Ze-yu, ZHOU Ying. Review of Quartz Enhanced Photoacoustic Spectroscopy[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(6): 940-945. doi: 10.3969/j.issn.1001-0548.2015.06.025

石英增强光声光谱技术发展现状

doi: 10.3969/j.issn.1001-0548.2015.06.025
详细信息
  • 中图分类号: O436

Review of Quartz Enhanced Photoacoustic Spectroscopy

  • 摘要: 痕量气体检测技术在污染监测、工业生产、国防安全等领域均发挥了重要的作用。石英增强光声光谱技术(QEPAS)具有抗干扰能力强、体积小、灵敏度高(ppb量级)等特点,是痕量气体检测技术的研究热点之一,实现了对多种有毒气体的高灵敏度检测。该文叙述了QEPAS技术原理,回顾了5种不同结构QEPAS系统的发展情况及进展,并对该技术的研究前景进行了展望。
  • [1] ZAYAKHANOV A, ZHAMSUEVA G, TSYDYPOV V, et al. Automated system for monitoring asmospheric pollution[J]. Meas Tech, 2008, 51: 1342-1346.
    [2] MEYER P L. Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques[J]. Rev Sci Instrum, 1990, 61: 1779-1807.
    [3] GEORGOULIAS A K, KIOUTSIOUKIS I, SYMEONIDIS P, et al. AMFIC web data base-asatellite system for the monitoring and forecasting of atmospheric pollution[J]. Journal of Engineering Science and Technology Review, 2008, 1: 58-61.
    [4] GÜLLÜK T, WAGNER H E, SLEMR F. A high-frequency modulated tunable diode laser absorption spectrometer for measurements of CO2, CH4, N2O, and CO in air samples of a few cm3[J]. Rev Sci Instrum, 1997, 68: 230-239.
    [5] STATHEROPOULOS M, SIANOS E, AGAPIOU A, et al. Preliminary investigation of using volatile organic compounds from human expired air, blood and urine for locating entrapped people in earthquakes[J]. J Chromatogr B, 2005, 822(1-2): 112-117.
    [6] MITSUBAYASHI K, MATSUNAGA H, NISHIO G, et al. Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking[J]. Biosens Bioelectron, 2005, 20(8): 1573-1579.
    [7] NAKISIMOVICH N, VOROTYNTSEV V, NIKITINA N, et al. Adsorption semiconductor sensor for diabetic ketoacidosis diagnosis[J]. Sensor Actuat B, 1996, 36: 419-421.
    [8] 唐前进, 邵杰. 远距离爆炸物探测技术的研究与应用[J]. 中国安防, 2009(9): 40-45. TANG Qian-jin, SHAO Jie. The research and application of remote explosive detection technology[J]. China Security Protection, 2009(9): 40-45.
    [9] PARMETER J E. The challenge of standoff explosives detection[C]//Proc Int Carnahan Conf Secur Technol. [S.l.]: [s.n.], 2005: 355-358.
    [10] WEIDMANN D, KOSTEREV A A, TITTLE F K, et al. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
    [11] KERR E L, ATWOOD J G. The laser illuminated absorptivity spectrophone: a method for measurement of weak absorptivity in gases at laser wavelengths[J]. Appl Opt, 1968, 7: 915-921.
    [12] HARREN F J M, REUSS J, WOLTERING E J. Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below the ppb level[J]. Appl Spectrosc, 1990, 44: 1360-1368.
    [13] BIJNEN F G C, REUSS J, HARREN F J M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection[J]. Rev Sci Instrum, 1996, 67: 2914-2923.
    [14] FINK T, BUESEHER S, GAEBLER R. An improved CO2 laser intracavity photoacoustic spectrometer for trace gas analysis[J]. Rev Sci Instrum, 1996, 67: 4000-4004.
    [15] PATIMISCO P, SCAMARCIO G, TITTEL F K, et al. Quartz-enhanced photoacoustic spectroscopy: a review[J]. Sensors-Basel, 2014, 14: 6165-6206.
    [16] MIKLÓS A, HESS P, MOHÁSCIÁ, et al. Improved photoacoustic detector for monitoring polar molecules such as ammonia with a 1.53 μm DFB diode laser[C]// Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena. Woodbury, NY, USA: [s.n.], 1999, 463: 126-128.
    [17] KOSTEREV A A, BAKHIRKIN Y A, CURL R F, et al. Quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2002, 27(21): 1902-1904.
    [18] WERLE P. Tunable diode laser absorption spectroscopy: recent findings and novel approaches[J]. Infrared Physics Technology, 1996, 37(1): 59-66.
    [19] SCHMOHL A, MIKLÓS A, HESS P. Effects of adsorption-desorption processes on th response time and accuracy of photoacoustic detection of ammonia[J]. Appl Opt, 2001, 40: 2571-2578.
    [20] ARNDT R. Analytical line shapes for Lorentzian signals broadened by modulation[J]. Appl Phys, 1965, 36: 2522-2524.
    [21] KOSTEREV A A, TILLEL F K, SEREBRYAKOV D, et al. Applications of quartz tuning fork in spectroscopic gas sensing[J]. Rev Sci Instrum, 2005, 76: 043105:1-043105:9.
    [22] LEWICKI R, WYSOCKI G, KOSTEREV A A, et al. QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm[J]. Opt Expr, 2007, 15: 7357-7366.
    [23] WOJCIK M D, PHILLIPS M C, CANNON B D, et al. Gas-phase photoacoustic sensor at 8.41 μm using quartz tuning forks and amplitude-modulated quantum cascade lasers[J]. Appl Phys B, 2006, 85: 307-313.
    [24] KOSTEREV A A, BUERKI P R, DONG L, et al. QEPAS detector for rapid spectral measurements[J]. Appl Phys B, 2010, 100: 173-180.
    [25] WEIDMANN D, KOSTEREV A A, TITTEL F K. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
    [26] HORSTJANN M, BAKHIRKIN Y A, KOSTEREV A A, et al. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2004, 79: 799-803.
    [27] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region[J]. Appl Phys B, 2005, 80: 133-138.
    [28] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K, et al. Photoacoustic phase shift as a chemically selective spectroscopic parameter[J]. Appl Phys B, 2004, 78: 673-676.
    [29] TITTEL F K, WYSOCKI G, KOSTEREV A A, et al. Semiconductor laser based trace gas sensor technology: Recent advances and applications[M]//EBRAHIM-ZADEH M, SOROKINA I T. Mid-infrared coherent sources and applications. Houten, Netherlands: Springer, 2008: 467-493.
    [30] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K, et al. QEPAS methane sensor performance for humidified gases[J]. Appl Phys B, 2008, 92: 103-109.
    [31] WEIDMANN D, KOSTEREV A A, TITTLE F K, et al. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2004, 29: 1837-1839.
    [32] HORSTJANN M, BAKHIRKIN Y A, KOSTEREV A A, et al. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2004, 79: 799-803.
    [33] KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region[J]. Appl Phys B, 2005, 80: 133-138.
    [34] WOJCIK M D, PHILLIPS M C, CANNON B D. Gas phase photoacoustic spectroscopy in the long-wave IR using quartz tuning forks and amplitude modulated quantum cascade lasers[J]. Proc SPIE, 2008, 6398, 63980S: 1-63980S:9.
    [35] LEWICKI R, WYSOCKIN G, KOSTEREV A A, et al. Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy[J]. Appl Phys B, 2007, 87: 157-162.
    [36] LIU K, GUO X Y, YI H M, et al. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Opt Lett, 2009, 34: 1594-1596.
    [37] YI H, CHEN W, GUO X, et al. An acoustic model for microresnonator in on-beam quartz-enhanced photo-acoustic spectroscopy[J]. Appl Phys B, 2012, 108: 361-367.
    [38] BOTTGER S, KOEHRING M, WILLER U, et al. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs[J]. Appl Phys B, 2013, 113: 227-232.
    [39] BORRI S, PATIMISCO P, SAMPAOLO A, et al. Terahertz quartz enhanced photo-acoustic sensor[J]. Appl Phys Lett, 2013, 103: 021105:1-021105:4.
    [40] BOTTGER S, KOEHRING M, WILLER U, et al. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs[J]. Appl Phys B, 2013, 113: 227-232.
    [41] SPAGNOLO V, KOSTEREV A A, DONG L, et al. NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser[J]. Appl Phys B, 2010, 100: 125-130.
    [42] DONG L, SPAGNOLO V, LEWICKI R, et al. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor[J]. Opt Expr, 2011, 19: 24037-24045.
    [43] PATIMISCO P, SPAGNOLO V, VITIELLO M S, et al. Coupling external cavity mid-IR quantum cascade lasers with low loss hollow metallic/dielectric waveguides[J]. Appl Phys B, 2012, 108: 255-260.
    [44] KÖHRING M, WILLER U, BÖTTGER S, et al. Fiber-coupled ozone sensor based on tuning fork-enhanced interferometric photoacoustic spectroscopy[J]. IEEE J Sel Top Quantum Electron, 2012, 18: 1566-1572.
    [45] PATIMISCO P, SPAGNOLO V, VITIELLO M S, et al. Low-loss hollow waveguide fibers for mid-infrared quantum cascade laser sensing applications[J]. Sensors-Basel, 2013, 13: 1329-1340.
    [46] SPAGNOLO V, PATIMISCO P, BORRI S, et al. Mid-infrared fiber-coupled QCL-QEPAS sensor[J]. Appl Phys B, 2013, 112: 25-33.
    [47] PAUL P H, KYCHAKOFF G. Fiber-optic evanescent field absorption sensor[J]. Appl Phys Lett, 1987, 51(1): 6:12-6: 14.
    [48] CAO Y, JIN W, HO L H, et al. Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers[J]. Opt Lett, 2012, 37: 214-216.
    [49] CAO Y, JIN W, HO L H. Gas detection with evanescent-wave quartz-enhanced photoacoustic spectroscopy[J]. Proc SPIE, 2012, 8351: 835121:1-835121:6.
    [50] FLYGARE W H. Molecular relaxation[J]. Acc Chem Res, 1968, 1: 121-127.
    [51] BORRI S, PATIMISCO P, SAMPAOLO A, et al. Terahertz quartz enhanced photo-acoustic sensor[J]. Appl Phys Lett, 2013, 103: 021105:1-021105:4. SPAGNOLO V, PATIMISCO P, BORRI S, et al. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation[J]. Opt Lett, 2012, 37: 4461-4463.
  • [1] 郭磊, 林啸宇, 王勇, 陈正武, 常伟.  基于深度学习的直升机旋翼声信号检测与识别一体化算法 . 电子科技大学学报, 2023, 52(6): 925-931. doi: 10.12178/1001-0548.2023108
    [2] 周书田, 颜信, 谢镇汕.  一种增强人脸识别模型训练稳定性的损失函数 . 电子科技大学学报, 2021, 50(1): 59-62. doi: 10.12178/1001-0548.2020226
    [3] 侯卫民, 赵拓, 苏佳, 高丽慧, 张易凡.  基于协同表示的高光谱和多光谱图像融合算法 . 电子科技大学学报, 2020, 49(4): 569-574. doi: 10.12178/1001-0548.2019145
    [4] 谢光忠, 王斯, 谢法彪, 苏元捷.  自供能气体传感器研究进展 . 电子科技大学学报, 2018, 47(1): 139-146. doi: 10.3969/j.issn.1001-0548.2018.01.021
    [5] 杜平安, 陈建伟, 王珏, 凌明祥.  气体轴承-转子耦合作用下离心机回转误差计算 . 电子科技大学学报, 2017, 46(2): 469-474. doi: 10.3969/j.issn.1001-0548.2017.02.023
    [6] 孙文军, 芮国胜, 张驰, 王瑞.  混沌检测系统对噪声的免疫性分析及稳健建模 . 电子科技大学学报, 2017, 46(3): 492-497. doi: 10.3969/j.issn.1001-0548.2017.03.003
    [7] 胡剑浩, 周将运, 何帅宁, 陈杰男.  基于Max-Log更新的马尔科夫链蒙特卡洛MIMO检测增强算法 . 电子科技大学学报, 2017, 46(1): 1-8. doi: 10.3969/j.issn.1001-0548.2017.01.001
    [8] 陈立伟, 杨建华, 孙亮, SHI Mi-mi.  基于分布式传感器阵列的静态气体源定位方法 . 电子科技大学学报, 2014, 43(2): 212-215.
    [9] 蒋晓东, 郑直, 祖小涛, 李春宏, 周信达, 黄进, 郑万国.  亚表面杂质对熔石英激光损伤的影响 . 电子科技大学学报, 2012, 41(2): 238-241,304. doi: 10.3969/j.issn.1001-0548.2012.02.013
    [10] 于景侠, 贺少勃, 向霞, 袁晓东, 郑万国, 郭袁俊, 祖小涛.  激光辐照熔石英控制的ANSYS仿真 . 电子科技大学学报, 2012, 41(6): 870-874. doi: 10.3969/j.issn.1001-0548.2012.06.010
    [11] 张靖, 何发镁, 邱云.  个性化推荐系统描述文件攻击检测方法 . 电子科技大学学报, 2011, 40(2): 250-254. doi: 10.3969/j.issn.1001-0548.2011.02.019
    [12] 邹见效, 张正迁, 徐红兵.  三重化冗余多机系统心跳检测机制研究 . 电子科技大学学报, 2010, 39(3): 379-383. doi: 10.3969/j.issn.1001-0548.2010.03.012
    [13] 杜晓松, 肖华, 蒋亚东.  MEMS微型气体富集器的研究进展 . 电子科技大学学报, 2009, 38(5): 597-602. doi: 10.3969/j.issn.1001-0548.2009.05.015
    [14] 李世银, 王秀娟, 钱建生, 刘琼.  TCP端到端等效噪声模型及拥塞控制方法研究 . 电子科技大学学报, 2009, 38(4): 489-492. doi: 10.3969/j.issn.1001-0548.2009.04.003
    [15] 琚生根, 周激流, 何坤, 夏欣, 王刚.  频域光照归一化的人脸识别 . 电子科技大学学报, 2009, 38(6): 1021-1025. doi: 10.3969/j.issn.1001-0548.2009.06.027
    [16] 程永新, 许家珆, 陈科.  一种新型入侵检测模型及其检测器生成算法 . 电子科技大学学报, 2006, 35(2): 235-238.
    [17] 伏飞, 刘晶, 齐望东, 沈洋.  一种基于IEEE 802.11 PSM的增强节能机制 . 电子科技大学学报, 2006, 35(6): 883-886.
    [18] 李荣冰, 刘建业, 林雪原, 华冰, 刘瑞华.  梳状音叉MEMS陀螺非随机误差分析 . 电子科技大学学报, 2006, 35(6): 928-931.
    [19] 何为, 范中晓, 霍彩红.  微分脉冲极谱测定痕量铊的研究 . 电子科技大学学报, 2004, 33(3): 309-311,315.
    [20] 巫柳, 杨亚培, 周愚, 戴基智, 李晓惠.  共线声光器件中叉指换能器的频响分析 . 电子科技大学学报, 2003, 32(3): 321-323.
  • 加载中
计量
  • 文章访问数:  3996
  • HTML全文浏览量:  154
  • PDF下载量:  491
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-12-15

石英增强光声光谱技术发展现状

doi: 10.3969/j.issn.1001-0548.2015.06.025
  • 中图分类号: O436

摘要: 痕量气体检测技术在污染监测、工业生产、国防安全等领域均发挥了重要的作用。石英增强光声光谱技术(QEPAS)具有抗干扰能力强、体积小、灵敏度高(ppb量级)等特点,是痕量气体检测技术的研究热点之一,实现了对多种有毒气体的高灵敏度检测。该文叙述了QEPAS技术原理,回顾了5种不同结构QEPAS系统的发展情况及进展,并对该技术的研究前景进行了展望。

English Abstract

王亚非, 刘丽娴, 高椿明, 卢泽宇, 周鹰. 石英增强光声光谱技术发展现状[J]. 电子科技大学学报, 2015, 44(6): 940-945. doi: 10.3969/j.issn.1001-0548.2015.06.025
引用本文: 王亚非, 刘丽娴, 高椿明, 卢泽宇, 周鹰. 石英增强光声光谱技术发展现状[J]. 电子科技大学学报, 2015, 44(6): 940-945. doi: 10.3969/j.issn.1001-0548.2015.06.025
WANG Ya-fei, LIU Li-xian, GAO Chun-ming, LU Ze-yu, ZHOU Ying. Review of Quartz Enhanced Photoacoustic Spectroscopy[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(6): 940-945. doi: 10.3969/j.issn.1001-0548.2015.06.025
Citation: WANG Ya-fei, LIU Li-xian, GAO Chun-ming, LU Ze-yu, ZHOU Ying. Review of Quartz Enhanced Photoacoustic Spectroscopy[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(6): 940-945. doi: 10.3969/j.issn.1001-0548.2015.06.025
参考文献 (51)

目录

    /

    返回文章
    返回