留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Algebraic Dynamics Study a Single Molecule Driven by a Time Dependent Laser Radiation Field

Qin-sheng ZHU Chang-chun DING Yong-zhang LI Shao-yi WU Hao WU

朱钦圣, 丁长春, 李咏章, 邬劭轶, 吴昊. 代数动力学研究含时激光辐射场驱动下的单分子[J]. 电子科技大学学报, 2016, 45(3): 365-370. doi: 10.3969/j.issn.1001-0548.2016.02.009
引用本文: 朱钦圣, 丁长春, 李咏章, 邬劭轶, 吴昊. 代数动力学研究含时激光辐射场驱动下的单分子[J]. 电子科技大学学报, 2016, 45(3): 365-370. doi: 10.3969/j.issn.1001-0548.2016.02.009
ZHU Qin-sheng, DING Chang-chun, LI Yong-zhang, WU Shao-yi, WU Hao. Algebraic Dynamics Study a Single Molecule Driven by a Time Dependent Laser Radiation Field[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(3): 365-370. doi: 10.3969/j.issn.1001-0548.2016.02.009
Citation: ZHU Qin-sheng, DING Chang-chun, LI Yong-zhang, WU Shao-yi, WU Hao. Algebraic Dynamics Study a Single Molecule Driven by a Time Dependent Laser Radiation Field[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(3): 365-370. doi: 10.3969/j.issn.1001-0548.2016.02.009

代数动力学研究含时激光辐射场驱动下的单分子

doi: 10.3969/j.issn.1001-0548.2016.02.009
详细信息
    作者简介:

    朱钦圣(1978-),男,博士,主要从事量子信息方面的研究

  • 中图分类号: O413

Algebraic Dynamics Study a Single Molecule Driven by a Time Dependent Laser Radiation Field

More Information
    Author Bio:

    ZHU Qin-sheng was born in 1978, and his research interests include quantum information

  • 摘要: 该文研究了含时激光辐射场驱动下的单分子系统的动力学性质。基于系统的su(1,1)⊕ h(3) 代数结构(h(3) 满足Heisenberg代数)和代数动力学方法,不仅获得了系统的解析解,而且还研究了系统的非绝热能级和几何相位。最后研究了非绝热能级和几何相位与激光辐射场频率的函数关系,展示了系统存在的共振现象以及分子共振吸收时激光辐射场频率和分子振动频率之间的漂移现象。
  • Figure  1.  The change of diabatic energy levels

    Figure  2.  The change of geometric phase

    Figure  3.  The change of the geometric phase

  • [1] BARUT A, BOHM A, NE'EMAN Y. Dynamical groups and spectrum generating algebras[M]. Singapore:World Scientific, 1988:3-69.
    [2] BIRMAN J L, SOLOMON A I. Spectrum generating algebras in condensed matter physics[M]. Singapore:World Scientific, 1988:317-339.
    [3] BIRMAN J L, SOLOMON A I. Dynamical group so(6) and coexistence:Superconductivity and charge-density waves[J]. Physical Review Letter, 1982(49):230-233.
    [4] SOLOMON A I. Group theory of superfluidity[J]. Journal of Mathematical Physics, 1971(12):390-393.
    [5] SOLOMON A I, BIRMAN J L. Dynamical group model of the CDW state[J]. Physical Review Letter, 1982, 88A:413-416.
    [6] WYBOURNE B G. Classical groups for physicists[M]. New York:Wiley, 1974.
    [7] WANG S J. The study of the theory of the man-made quantum systems and algebraic dynamics[J]. Progress in Physics, 1999(19):331-370.
    [8] PAUL W. Electromagnetic traps for charged and neutral particles[J]. Review of Modern Physics, 1990(62):531-540.
    [9] WANG S J, ZUO W, WEIGUNY A, et al. Exact solution of the linear nonautonomous system with the SU(1,1) dynamical group[J]. Physics Letter A, 1994(196):7-12.
    [10] WANG S J. Nonadiabatic Berry's phase for a spin particle in a rotating magnetic field[J]. Physical Review A, 1990(42):5107-5110.
    [11] WANG S J, CEN L X. Exact solution of the L-S coupled system in a time-dependent magnetic field[J]. Physical Review A, 1998(58):3328-3331.
    [12] CEN L X, QI L X, JING Y Y, et al. Evaluation of holonomic quantum computation:adiabatic versus nonadiabatic[J]. Physical Review Letter, 2003(90):147902.
    [13] WANG X Q, CEN L X. Resolving time-dependent quantum systems via the concatenated cranking procedure:Methods and applications[J]. Physics Letter A, 2011, 375(23):2220-2223.
    [14] ZHU Q S, KUANG X Y, TAN X M. Algebraic dynamics study for homotrinuclear linear spin cluster in a rotating magnetic field[J]. Physical Review A, 2005(71):064102.
    [15] ZHU Q S, LAI W, WU D L. Dynamical symmetry method investigates the dissipation and decoherence of the two-level jaynes-cummings model[J]. Z Naturforsch A, 2012, 67a:559-566.
    [16] WANG S J, LI F L, WEIGUNY A. Algebraic dynamics and time-dependent dynamical symmetry of nonautonomous systems[J]. Physics Letter A, 1993(180):189-196.
    [17] STENHOLM S. Foundations of laser spectroscopy[M]. New York:Wiley, 1984.
    [18] MARGCUSE D. Engineering quantum electrodynamics[M]. New York:Academic Press, 1981.
    [19] EBERLY J H, LABROPOULOS P. Multiphoton processes[C]//Proceedings of the International Conference at the University Rochester. New York:Wiley, 1977.
    [20]
    [21] BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1984, 392:45-57.
    [22] SIMON B. Holonomy, the quantum adiabatic theorem, and Berry's phase[J]. Physical Review Letter, 1983, 51:2167-2170.
    [23] YING Z J, WANG S J, ZHANG W Z. Exact solution to landau system with time-dependent electromagnetic fields[J]. Chinese Physics Letter, 1999, 16:391-393.
    [24] ZHANG C X, ZHU Q S, KUANG X Y. Resonance excitation effect for a molecule driven by a laser radiation field:Algebraic dynamics method to determine the diabatic energy levels and geometric phase[J]. Physics Letter A, 2007(371):354-359.
    [25] KEVIN K, SCHUMAN J S, LOEWEN N A. Outcomes of ab interno trabeculectomy with the trabectome by degree of angle opening[J]. British Journal of Ophthalmology, 2014, 99(7):914-919.
  • [1] LI Peng, HU Jiang-ping, ZHANG Yu-ping.  Design and Analysis of Distributed Optimization Algorithm for Economic Dispatch Problem of Energy-Water Hybrid Networks . 电子科技大学学报, 2020, 49(5): 652-659, 665. doi: 10.12178/1001-0548.2020238
    [2] SU Shuang-ping, YANG Wen, ZHAO Zhi-yun.  Security Analysis of Opinion Dynamics in Social Networks . 电子科技大学学报, 2020, 49(6): 924-933. doi: 10.12178/1001-0548.2019234
    [3] 聂宝林, 杜平安.  带孔阵屏蔽腔电磁屏蔽特性的时域有限元分析 . 电子科技大学学报, 2014, 43(4): 636-640. doi: 10.3969/j.issn.1001-0548.2014.04.029
    [4] 刘孝保, 杜平安, 李磊.  叠层CSP封装的振动模糊可靠性分析 . 电子科技大学学报, 2008, 37(3): 478-480.
    [5] 廖小丽.  毫米波生物效应的水分子谐振机理 . 电子科技大学学报, 2002, 31(1): 80-83.
  • 加载中
图(3)
计量
  • 文章访问数:  4512
  • HTML全文浏览量:  1225
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-11
  • 修回日期:  2016-02-26
  • 刊出日期:  2016-05-01

Algebraic Dynamics Study a Single Molecule Driven by a Time Dependent Laser Radiation Field

doi: 10.3969/j.issn.1001-0548.2016.02.009
    作者简介:

    ZHU Qin-sheng was born in 1978, and his research interests include quantum information

  • 中图分类号: O413

摘要: 该文研究了含时激光辐射场驱动下的单分子系统的动力学性质。基于系统的su(1,1)⊕ h(3) 代数结构(h(3) 满足Heisenberg代数)和代数动力学方法,不仅获得了系统的解析解,而且还研究了系统的非绝热能级和几何相位。最后研究了非绝热能级和几何相位与激光辐射场频率的函数关系,展示了系统存在的共振现象以及分子共振吸收时激光辐射场频率和分子振动频率之间的漂移现象。

English Abstract

朱钦圣, 丁长春, 李咏章, 邬劭轶, 吴昊. 代数动力学研究含时激光辐射场驱动下的单分子[J]. 电子科技大学学报, 2016, 45(3): 365-370. doi: 10.3969/j.issn.1001-0548.2016.02.009
引用本文: 朱钦圣, 丁长春, 李咏章, 邬劭轶, 吴昊. 代数动力学研究含时激光辐射场驱动下的单分子[J]. 电子科技大学学报, 2016, 45(3): 365-370. doi: 10.3969/j.issn.1001-0548.2016.02.009
ZHU Qin-sheng, DING Chang-chun, LI Yong-zhang, WU Shao-yi, WU Hao. Algebraic Dynamics Study a Single Molecule Driven by a Time Dependent Laser Radiation Field[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(3): 365-370. doi: 10.3969/j.issn.1001-0548.2016.02.009
Citation: ZHU Qin-sheng, DING Chang-chun, LI Yong-zhang, WU Shao-yi, WU Hao. Algebraic Dynamics Study a Single Molecule Driven by a Time Dependent Laser Radiation Field[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(3): 365-370. doi: 10.3969/j.issn.1001-0548.2016.02.009
  • Algebraic dynamics is a theory which studies the quantum system by the algebraic method[1-7]. It always use the group relationship of the system operators or group structure of the system to discuss the properties of the system. In the past years,it has been extensively used in nuclear physics for many autonomous systems. However,many systems are non-autonomous which depend on time in many experiments. So,It’s necessary to extend the theory of algebraic dynamics to resolve the non-autonomous problems because it can help us control the systems. Several typical non-autonomous quantum systems have been researched by the method of dynamical algebras,e.g. the su(1,1) dynamic structure for the particle moving in time dependent Paul trap[8], the polarization of spin particle in accelerator forms a su(2) dynamic system[9], the spin particle in a rotating magnetic field,and the Berry phase of a laser in helical optical fiber forming a su(2) dynamic system[17-19]. As an important controlling and measurement method for particles and substance,the laser radiation field is always chosen by people[20-22]. When the laser radiation field interacts with particles or substance,an important physical phenomenon,resonance excitation effect will occur. By this physical phenomenon, human can understand many important properties of the particles and substance,such as molecular structure and vibration frequency of the substance. Since the laser radiation fields always depend on time,these quantum system become the non-autonomous quantum system and are accompanied with the resonance excitation effects. So, it is interesting to research the diabatic energy and geometric phase[23] under the resonance excitation phenomena.

    In this work, we research the properties of the single molecule which is driven by a time dependent laser radiation field. Firstly,we analyze the $\operatorname{su} (1,1) \oplus h(3)$ h(3) is Heisenberg algebra) Lie algebraic structure of this system. Secondly,the exact solution of the system has been obtained by the use of algebraic dynamics method. Finally,based on the exact solutions, we study the changing properties of the diabatic energy levels and the geometric phase. Simultaneously,we show that there exists a shift between the laser frequency and the vibration frequency of the molecule when the resonance excitation occurs.

    • A single molecule is driven by a time dependent laser radiation field,and the system Hamiltonian is described by the following model which represents a charged harmonic oscillator in a laser radiation field:

      $$\hat H = \frac{1}{{2m}}{\left( {\hat P - \frac{q}{c}\hat A} \right)^2} + \frac{1}{2}m{\omega ^2}{\hat x^2}$$ (1)

      Considering the potentials $\left. {A = \left( { - \frac{{c{\varepsilon _0}}}{{2\Omega }}sin(\Omega t),} \right.{B_0}x,0} \right)$ and, $\phi = - \frac{1}{2}{\varepsilon _0}\cos (\Omega t)\hat x$ (1) can be written as:

      $$\displaylines{ \hat H(t) = \frac{{{{\hat p}_x}^2 + {{\hat p}_y}^2 + {{\hat p}_z}^2}}{{2m}} + \frac{{q{\varepsilon _0}\sin (\Omega t)}}{{2m\Omega }}{{\hat p}_x} + \cr \left( {{B_0}{{\hat p}_y} - \frac{1}{2}q{\varepsilon _0}\cos (\Omega t)} \right)\hat x + \cr \left( {\frac{1}{2}m{\omega ^2} + {B_0}^2} \right){{\hat x}^2} + \frac{{{{(q{\varepsilon _0})}^2}}}{{8m{\Omega ^2}}}{\sin ^2}(\Omega t) \cr} $$ (2)

      where q is the molecule charge; c is velocity of light,the oscillator potential of the molecule is $\frac{1}{2}m{\omega ^2}{\hat x^2}$ ; B0 is a constant which describes the magnetic field amplitude of the laser electromagnetic field and directs the z axis; ε0 and Ω are electric field amplitude and frequency of the laser electromagnetic field respectively.

      It is easy to prove $[{\hat p_y},\hat H] = [{\hat p_z},\hat H] = 0$ . Define the new operators ${\hat k_ + } = \frac{1}{2}{\hat p_x}^2;{\hat k_0} = - \frac{i}{4}[{\hat p_x}\hat x + \hat x{\hat p_x}];{\hat k_ - } = \frac{1}{2}{\hat x^2};{k_1} = {\hat p_x};{\hat k_2} = \hat x$ . For certain eigenvalues ${p_y}\left( {{p_z}} \right)$ of operators ${\hat p_y}\left( {{{\hat p}_z}} \right)$ ,the Hamiltonian $\hat H(t)$ can be rewritten as:

      $$\hat H(t) = \frac{{{p_y}^2 + {p_z}^2}}{{2m}} + {X_ + }{\hat k_ + } + {X_ - }{\hat k_ - } + {X_1}{\hat k_1} + {X_2}{\hat k_2} + X$$ (3)

      Where the parameters are:

      $$\left\{ \matrix{ {X_ + } = {1 \over m};{X_ - } = m{\omega ^2} + 2{B_0}^2;{X_1} = {{q{\varepsilon _0}\sin (\Omega t)} \over {2m\Omega }} \hfill \cr {X_2} = {B_0}{p_y} - {1 \over 2}q{\varepsilon _0}\cos (\Omega t);X = {{{{(q{\varepsilon _0})}^2}} \over {8m{\Omega ^2}}}{\sin ^2}(\Omega t) \hfill \cr} \right.$$ (4)

      Through (3) we find that the system has the dynamical algebraic structure $\operatorname{su} (1,1) \oplus h(3)$ [24]. It can be checked that: 1) ${\hat k_ + },{\hat k_0}{\text{ }}and{\text{ }}{\hat k_ - }$ spanLie algebra. 2) ${\hat k_1},{\hat k_2}{\text{ }}and {\text{ 1}}$ span h(3)(h(3) is Heisenberg algebra) Lie algebra. 3) It satisfy the following communication relations ( $\hbar = 1$ ):

      $$[{\hat k_ + },{\hat k_ - }] = 2{\hat k_0}{\text{ }}[{\hat k_0},{\hat k_ \pm }] = \pm {\hat k_ \pm }{\text{ }}[{\hat k_1},{\hat k_2}] = - i$$ (5)

      Simultaneously,the generators of su(1,1) and h(3) also satisfy the following communication relations:

      $$\left\{ \matrix{ [{{\hat k}_ + },{{\hat k}_1}] = 0{\rm{ }}[{{\hat k}_0},{{\hat k}_1}] = {1 \over 2}{{\hat k}_1}{\rm{ }}[{{\hat k}_ - },{{\hat k}_1}] = i{{\hat k}_2} \hfill \cr [{{\hat k}_ + },{{\hat k}_2}] = - i{{\hat k}_1}{\rm{ }}[{{\hat k}_0},{{\hat k}_2}] = - {1 \over 2}{{\hat k}_2}{\rm{ }}[{{\hat k}_ - },{{\hat k}_2}] = 0 \hfill \cr} \right.$$ (6)

      From (4) we know that the system has the dynamical algebraic structure $h\omega (4)$ [12-16] for the parameters ${X_1} = {X_2} = X(t) = 0\left( {{B_0} = 0} \right)$ .

    • The time-evolution of the system satisfy the time-dependent Schrödinger equation:

      $$i\frac{\partial }{{\partial t}}\left| {\psi (t)} \right\rangle = \hat H(t)\left| {\psi (t)} \right\rangle $$ (7)

      Adopting the solving steps of algebraic dynamics[9-15],firstly,introduce the gauge transformation:

      $$\displaylines{ {U_g}(t) = \exp (iv(t))\exp (i{v_2}(t){{\hat k}_2})\exp ( - i{v_1}(t){{\hat k}_1}) \times \cr \exp (i{v_ - }(t){{\hat k}_ - })\exp (i{v_0}(t){{\hat k}_0}) \cr} $$ (8)

      where $v(t),{v_2}(t),{v_1}(t),{v_ - }(t)$ and v0(t) are all time-dependent parameters.

      The Schrödinger equation under the gauge transformation (7) ( $\hbar = 1$ ) becomes:

      $$i\partial \left| {{{\bar{\psi }}}_{n}}(t) \right\rangle \text{/}\partial \left| {{{\bar{\psi }}}_{n}}(t) \right\rangle \partial t=\hat{\bar{H}}(t)\left| {{{\bar{\psi }}}_{n}}(t) \right\rangle $$ (9)

      Here the gauged Hamiltonian is given by:

      $$\left\{ \begin{align} & \hat{\bar{H}}(t)=U_{g}^{-1}(t)\hat{H}(t){{U}_{g}}(t)-iU_{g}^{-1}(t)(\partial {{U}_{g}}(t)\partial t) \\ & \left| {{\psi }_{n}}(t) \right\rangle ={{U}_{g}}(t)\left| {{{\bar{\psi }}}_{n}}(t) \right\rangle \\ \end{align} \right.$$ (10)

      Substituting (3) and (7) into (9),after some complex calculations,one has:

      $$\hat{\bar{H}}(t)={{Z}_{+}}{{\hat{k}}_{+}}+i{{Z}_{0}}{{\hat{k}}_{0}}+{{Z}_{-}}{{\hat{k}}_{-}}+{{Z}_{1}}{{\hat{k}}_{1}}+{{Z}_{2}}{{\hat{k}}_{2}}+Z$$ (11)

      Here the coefficients of (11) are:

      $$\left\{ \matrix{ {Z_ + } = \exp [ - {v_0}(t)]{X_ + }{\rm{ }}{Z_0} = - {{\dot v}_0}(t) + 2{X_ + }{v_ - }(t) \hfill \cr {Z_0} = - {{\dot v}_0}(t) + 2{X_ + }{v_ - }(t) \hfill \cr {Z_ - } = \exp [{v_0}(t)][{{\dot v}_ - }(t) + {X_ - } + {X_ + }v_ - ^2(t)] \hfill \cr} \right.$$ (12)
      $$\displaylines{ {Z_1} = \exp \left[ { - \frac{{{v_0}(t)}}{2}} \right][ - {{\dot v}_1}(t) + {X_1} + {X_ + }{v_2}(t)] \cr {Z_2} = \exp \left[ {\frac{{{v_0}(t)}}{2}} \right]\{ [{{\dot v}_2}(t) + {X_2} + {X_ - }{v_1}(t)] + \cr [ - {{\dot v}_1}(t) + {X_1} + {X_ + }{v_2}(t)]{v_ - }(t)\} \cr Z = \dot v(t) + {v_1}(t){{\dot v}_2}(t) + X + {X_2}{v_1}(t) + {X_1}{v_2}(t) + \cr \frac{1}{2}{X_ - }v_1^2(t) + \frac{1}{2}{X_ + }v_2^2(t) \cr} $$

      Because we can choose the appropriate transformation which is one of the advantages of algebraic dynamics[25] to simplify the calculation,which is also easy to find the Cartan operators,the best choice of the gauge transformation satisfies the following conditions:

      $$\frac{{{Z_ - }}}{{{Z_ + }}} = \frac{{\exp [2{v_0}(t)]}}{{{X_ + }}}[{\dot v_ - }(t) + {X_ - } + {X_ + }v_ - ^2(t)] = {\text{const}} = k$$ (13a)
      $${Z_0} = - {\dot v_0}(t) + 2{X_ + }{v_ - }(t) = 0$$ (13b)
      $${Z_1} = \exp \left[ { - \frac{{{v_0}(t)}}{2}} \right][ - {\dot v_1}(t) + {X_1} + {X_ + }{v_2}(t)] = 0$$ (13c)
      $$\displaylines{ {Z_2} = \exp \left[ {\frac{{{v_0}(t)}}{2}} \right]\{ [{{\dot v}_2}(t) + {X_2} + {X_ - }{v_1}(t)] + \cr [ - {{\dot v}_1}(t) + {X_1} + {X_ + }{v_2}(t)]{v_ - }(t)\} = 0 \cr} $$ (13d)
      $$\displaylines{ Z = \dot v(t) + {v_1}(t){{\dot v}_2}(t) + X + {X_2}{v_1}(t) + {X_1}{v_2}(t) + \cr \frac{1}{2}{X_ - }v_1^2(t) + \frac{1}{2}{X_ + }v_2^2(t) = 0 \cr} $$ (13e)

      After some calculation,the solutions of the parameters of (13) can be obtained as follows:

      $${v_ - }(t) = 0,{v_0}(t) = 0,k = \frac{{{X_ - }}}{{{X_ + }}} = [{(m\omega )^2} + 2mB_0^2]$$
      $$\eqalign{ & {v_1}(t) = A[\cos (\Omega t) - \cos (k't)] - \frac{{{B_0}{p_y}}}{{m{\omega ^2} + 2B_0^2}} \cr & A = \frac{{q{\varepsilon _0}}}{{[2{{({B_0})}^2} + m({\omega ^2} - {\Omega ^2})]}} \cr & k' = \sqrt {\frac{{m{\omega ^2} + 2B_0^2}}{m}} \cr & {v_2}(t) = mA[k'\sin (k't) - \Omega \sin (\Omega t)] - \frac{{q{\varepsilon _0}}}{{2\Omega }}\sin (\Omega t) \cr} $$
      $$\eqalign{ & v(t) = - \int_{{\text{ }}0}^{{\text{ }}t} {[{v_1}(t'){{\dot v}_2}(t') + X + {X_2}{v_1}(t') + {X_1}{v_2}(t')} + \cr & \frac{1}{2}{X_ - }v_1^2(t') + \frac{1}{2}{X_ + }v_2^2(t')]{\text{d}}t' \cr} $$ (14)

      Here,consider the initial conditions $v(0) = 0,{v_2}(0) = 0,{v_1}(0) = {\text{const}},{v_ - }(0) = 0$ and ${v_0}(0) = 0$ .

      Putting (13) to (10),we obtain the covariant Hamiltonian:

      $$\hat{\bar{H}}(t)=\frac{{{p}_{y}}^{2}+{{p}_{z}}^{2}}{2m}+f(t)\hat{\bar{I}}(0)$$ (15)

      Where:

      $$\hat{\bar{I}}(0)={{\hat{k}}_{+}}+k{{\hat{k}}_{-}}=\frac{1}{2}{{\hat{p}}^{2}}+\frac{1}{2}k{{\hat{x}}^{2}},f(t)=\frac{1}{m}$$ (16)

      The Cartan operator $\hat{\bar{I}}(0)$ does not depends on time explicitly and has the standard form of harmonic oscillator. So,the time-dependent dynamical symmetry can be covered into the stationary dynamical symmetry by choosing a proper gauge transformation.

      The eigen problems of the Cartan invariant operator $\hat{I}(t)={{U}_{g}}(t)\hat{\bar{I}}(0)U_{g}^{-1}(t)$ can be obtained. Let $\left| n \right\rangle $ be the eigenstate of $\hat{\bar{I}}(0)$ (here is the quantum number of the standard form of harmonic oscillator),namely:

      $$\hat{\bar{I}}(0)\left| n \right\rangle =\left( n+\frac{1}{2} \right){{\omega }_{0}}\left| n \right\rangle \text{ }n=0,\text{ }1,\text{ }2,\text{ }\cdots ,\text{ }\omega _{0}^{2}=k$$ (17)

      so the eigenvalues and eigenstates are:

      $$\hat I(t){U_g}(t)\left| n \right\rangle = \left( {n + \frac{1}{2}} \right){\omega _0}{U_g}(t)\left| n \right\rangle = \left( {n + \frac{1}{2}} \right){\omega _0}\left| {{\phi _n}(t)} \right\rangle $$ (18)

      Where $\left| {{\phi _n}(t)} \right\rangle = {U_g}(t)\left| n \right\rangle $ is the eigenstate of $\hat I(t)$ with eigenvalue $\left( {n + \frac{1}{2}} \right){\omega _0}$ .

      So the covariant Schrödinger equation (9) has the following solutions:

      $$\left| {{{\bar \psi }_{{p_y}{p_z}n}}(t)} \right\rangle = \exp [ - i{\Theta _{{p_y}{p_z}n}}(t)]\left| {{\varphi _{{p_y}{p_z}n}}} \right\rangle $$ (19)

      where:

      $$\eqalign{ & {\Theta _{{p_y}{p_z}n}}(t) = \int_{{\text{ }}0}^{{\text{ }}t} {\left[ {\frac{{{p_y}^2 + {p_z}^2}}{{2m}} + (n + \frac{1}{2}){\omega _0}f(\tau )} \right]{\text{d}}\tau } \cr & \left| {{\varphi _{{p_y}{p_z}n}}} \right\rangle = \frac{{{{\text{e}}^{i({p_y}y + {p_z}z)}}}}{{2{\pi }}}\left| n \right\rangle \cr} $$ (20)

      In order to obtain the solutions of (7),firstly,we need to rewrite $\left| {{{\bar \psi }_n}(t)} \right\rangle $ under the coordinate x representation as follows:

      $$\displaylines{ \left| {{{\bar \psi }_{{p_y}{p_z}n}}(t)} \right\rangle = \frac{{{{\text{e}}^{i({p_y}y + {p_z}z)}}}}{{2{\pi }}}{N_n}(\alpha ) \times \cr \exp [ - i{\Theta _n}(t)]\exp [ - {(\alpha x)^2}/2]{H_n}(\alpha x) \cr} $$ (21)

      here ${N_n}(\alpha ) = {[\alpha /\alpha \sqrt \pi {2^n}n!]^{{1 \over 2}}},{\alpha ^2} = {\omega _0} = \sqrt k $ and ${H_n}(\alpha x)$ is the Hermite polynomial.

      Secondly, using the following relations:

      $$\exp [ - i{v_1}(t){\hat k_1}]F(x) = \exp [ - i{v_1}(t)\hat p]F(x) = F(x - {v_1}(t))$$ (22)

      The orthonormal nonadiabatic basis can be directly obtained and given as follows:

      $$\displaylines{ \left| {{\psi _{{p_y}{p_z}n}}(t)} \right\rangle = {U_g}(t)\left| {{{\bar \psi }_{{p_y}{p_z}n}}(t)} \right\rangle = \cr \frac{{{{\text{e}}^{i({p_y}y + {p_z}z)}}}}{{{\text{2\pi }}}}\exp [ - i{\Theta _{{p_y}{p_z}n}}(t)]\left| {{\phi _n}(t)} \right\rangle = \cr \frac{{{{\text{e}}^{i({p_y}y + {p_z}z)}}}}{{2{\pi }}}{N_n}(\alpha )\exp [ - i[{\Theta _n}(t) - v(t)]]\exp [i{v_2}(t)x] \times \cr \exp \left\{ { - \frac{1}{2}[\alpha {{(x - {v_1}(t)]}^2}} \right\}{H_n}(\alpha (x - {v_1}(t)) \cr} $$ (23)

      The equation describes a motion of quasi- harmonic oscillator in coordinate space and the origin of this coordinate space constantly moves and stretches. At the same time,there are a collective velocity potential ${v_2}(t)x$ and a time-dependent phase factor for this system.

      The general solutions of the time-dependent Schrödinger equation (7) can be expanded by the nonadiabatic basis:

      $$\displaylines{ \left| {\psi (t)} \right\rangle = \sum\limits_n {{C_{{p_y}{p_z}n}}} \left| {{\psi _{{p_y}{p_z}n}}(t)} \right\rangle = \cr \sum\limits_n {{C_{{p_y}{p_z}n}}} \frac{{{{\text{e}}^{i({p_y}y + {p_z}z)}}}}{{2{\pi }}}\exp [ - i{\Theta _{{p_y}{p_z}n}}(t)]\left| {{\phi _n}(t)} \right\rangle \cr} $$ (24)

      where ${C_{{p_y}{p_z}n}}$ is an expansion coefficient that is not dependent on time. All the dynamical information is included in the nonadiabatic basis.

    • Using (10), (14),(15),the diabatic energy levels of the system can be obtain by:

      $$\begin{align} & {{E}_{{{p}_{y}}{{p}_{z}}n}}(t)=\langle {{\psi }_{{{p}_{y}}{{p}_{z}}n}}(t)|\hat{H}(t)\left| {{\psi }_{{{p}_{y}}{{p}_{z}}n}}(t) \right\rangle = \\ & \langle {{{\bar{\psi }}}_{{{p}_{y}}{{p}_{z}}n}}(t)|\hat{\bar{H}}(t)\left| {{{\bar{\psi }}}_{{{p}_{y}}{{p}_{z}}n}}(t) \right\rangle + \\ & \langle {{{\bar{\psi }}}_{{{p}_{y}}{{p}_{z}}n}}(t)|iU_{g}^{-1}(t)\frac{\partial {{U}_{g}}(t)}{\partial t}\left| {{{\bar{\psi }}}_{{{p}_{y}}{{p}_{z}}n}}(t) \right\rangle = \\ & \frac{{{p}_{y}}^{2}+{{p}_{z}}^{2}}{2m}+\left( n+\frac{1}{2} \right){{\omega }_{0}}f(t)-\{{{v}_{1}}(t){{{\dot{v}}}_{2}}(t)+v(t)\} \\ \end{align}$$ (25)

      From(24),it is easily found: 1) the change of the diabatic energy levels comes from the factor $\{ {v_1}(t){\dot v_2}(t) + v(t)\} $ . 2) the changing approach of the diabatic energy levels are quasi-periodic due to the periodic changing parameters parameters ${v_1}(t),{v_2}(t)$ and $v(t)$ .

      To better understand the properties of the diabatic energy levels,the changing behaviors are shown in Fig.1 (Here,the parameters $n = 0,\omega = 2{\text{ }}100{\text{ c}}{{\text{m}}^{ - 1}},{p_x} = 1,{p_y} = 0,m = 1 \times {10^{ - 27}},q = 1$ and ${\varepsilon _0} = 1$ ). The diabatic energy level shows an abrupt increase when the laser frequency Ω arrives about 2100cm-1, corresponding to “the resonance absorption effect of molecular”,and the different peaks display the different magnetic field amplitudes B0. Simultaneously,with the increasing of the magnetic field amplitude B0,the laser frequency Ω diverges from the molecule vibration frequency ω,which is characterized by the peak-shifting of the resonance absorption. The above results may be helpful for the explanation of laser-induced effect of biological genetic variation[2-3, 24],e.g. the bond of biological genetic may be broken and recombined which is aroused by the resonance absorption effect.

      Figure 1.  The change of diabatic energy levels

      It is surprising why the resonance phenomenon occurs. The results stem from the parameters ${v_1}(t),{v_2}(t)$ and v(t) (see (26)). From (15) we find that the changing period of the parameters ${v_1}(t),{v_2}(t)$ and v(t) not only depends on the Ω,but also on k' which depends on the ω and B0. So the above reasons lead to resonance phenomenon and a divergence between Ω and ω. Moreover,from the parameters k' A and in (15),we know that: 1) the shift of the resonance frequency increases with the decrease of the ω and the increase of the B0; 2) The peak value displays different for different B0.

    • The system states will acquire a total phase which composes of the dynamical phase and the geometric phase when the parameters of the system go through a time-dependent evolution. The dynamical phase depends both on the path and on the rate of the path,while the geometric phase depends on the influence of the external environment or the interaction with the background.

      The dynamical phase ${\gamma _d}$ [2-3, 24]is:

      $${\gamma _d} = - \int_{{\text{ }}0}^{{\text{ }}t} {\left\langle {{\psi _{{p_y}{p_z}n}}(\tau )} \right|\hat H(\tau )\left| {{\psi _{{p_y}{p_z}n}}(\tau )} \right\rangle {\text{d}}\tau } $$ (26)

      The geometric phase β [1] is:

      $$\beta = {\gamma _{0 - t}} - {\gamma _d} = {\gamma _{{U_g}}} + {\gamma _I}$$ (27)

      where the total phase ${\gamma _{0 - t}}$ is:

      $$\displaylines{ {\gamma _{0 - t}} = \operatorname{Im} \left( {\ln \left\langle {{\psi _{{p_y}{p_z}n}}(0)} \right|\left| {{\psi _{{p_y}{p_z}n}}(t)} \right\rangle } \right) = \cr - {\Theta _{{p_y}{p_z}n}}(t) + \operatorname{Im} \left( {\ln \left\langle {{{\bar \psi }_{{p_y}{p_z}n}}(t)} \right|{U_g}(t)\left| {{{\bar \psi }_{{p_y}{p_z}n}}(t)} \right\rangle } \right) = \cr - {\Theta _{{p_y}{p_z}n}}(t) + {\gamma _{{U_g}}} \cr} $$ (28)

      where ${\Theta _{{p_y}{p_z}n}}(t)$ is the total phase of $\left| {{{\bar \psi }_{{p_y}{p_z}n}}(t)} \right\rangle ,{\gamma _{{U_g}}} = \operatorname{Im} \left( {\ln \left\langle {{{\bar \psi }_{{p_y}{p_z}n}}(t)} \right|{U_g}(t)\left| {{{\bar \psi }_{{p_y}{p_z}n}}(t)} \right\rangle } \right)$ ,is the phase induced by the gauged transformation,and ${\gamma _I} = - ({v_1}(t){\dot v_2}(t) + \dot v(t))$ .

      In order to further study the changing properties of the geometric phase,we calculate the geometric phase for respectively.

      For $n = 0$ ,the geometric phase is:

      $$\beta = v + \frac{{{v_1}{v_2}}}{{{\alpha ^2} + 1}} - ({v_1}(t){\dot v_2}(t) + \dot v(t))$$ (29)

      For $n = 0$ ,the geometric phase is:

      $$\beta = v + \frac{{{v_1}{v_2}}}{{{\alpha ^2} + 1}} - ({v_1}(t){\dot v_2}(t) + \dot v(t)) - \theta $$ (30)

      Where θ is the phase angle of the complex number $(v_2^2 + {\alpha ^2}v_1^2 - {\alpha ^2} - 1) + i({v_1}{v_2}(1 - {\alpha ^2}))$ .

      Contrasting (30) and (31),it is easy to know that the difference of the Berry phase is aroused by the θ for n=0 and n=1. Because the phase angle θ depends on the parameters ${v_1}(t),{v_2}(t)$ and α,it shows the quasi-periodic changing behavior and depend on the value of ω and B0.

      The changing of the geometric phase β are shown in the Fig.2 and Fig.3 for n=0 and n=1 respectively (The related parameters are same as Fig.1). We found that: 1) The geometric phase β also presents resonance phenomenon when the laser frequency Ω gets about 2100 cm-1. 2) Similar to the diabatic energy level, there also exists a shift of the peak of the resonance for the difference between the laser frequency Ω and the molecule vibration frequency ω. 3) With the increase of the magnetic field amplitude B0,the shift of the peak of the resonance increases. 4) The influence of the phase angle β is small for n=0 and n=1 . The results stem from the changing period of the parameters ${v_1}(t),{v_2}(t)$ and v(t) are dependent on the k' and Ω. Simultaneously, the parameters and depend on the k' and A depend on the ω and B0. It arouses that the shift of the resonance frequency increases with the decrease of the and the ω increase of the B0.

      Figure 2.  The change of geometric phase

      Figure 3.  The change of the geometric phase

    • Based on $\operatorname{su} (1,1) \oplus h(3)$ dynamical symmetry of the molecule which is driven by a time dependent laser radiation field,we obtain the exact solutions of the system by use of algebraic dynamics and further discuss the changing properties of the diabatic energy levels and geometric phase. It is found that there exists the resonance phenomenon for the diabatic energy levels and geometric phase when the resonance frequency Ω is close to the molecular vibration frequency ,and a divergence which depends on the magnetic field amplitude B0 exists between Ω and ω. The present work may be helpful for the explanation of laser-induced effect of biological genetic variation,and it shows that the method of dynamical algebras is useful for the study non-autonomous quantum system which has some algebraic structures.

      Acknowledgments

      The work was supported by UOG-UESTC Joint school educational innovation program of university of electronic science and technology of China (GL2014001)

参考文献 (25)

目录

    /

    返回文章
    返回