留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization Algorithm of the Beam Direction Calibration for a Small Antenna Array

Yan LI Bu-ning TIAN Feng YANG

李岩, 田步宁, 杨峰. 小规模天线阵列波束指向校准算法研究[J]. 电子科技大学学报, 2017, 46(5): 692-696. doi: 10.3969/j.issn.1001-0548.2017.05.009
引用本文: 李岩, 田步宁, 杨峰. 小规模天线阵列波束指向校准算法研究[J]. 电子科技大学学报, 2017, 46(5): 692-696. doi: 10.3969/j.issn.1001-0548.2017.05.009
LI Yan, TIAN Bu-ning, YANG Feng. Optimization Algorithm of the Beam Direction Calibration for a Small Antenna Array[J]. Journal of University of Electronic Science and Technology of China, 2017, 46(5): 692-696. doi: 10.3969/j.issn.1001-0548.2017.05.009
Citation: LI Yan, TIAN Bu-ning, YANG Feng. Optimization Algorithm of the Beam Direction Calibration for a Small Antenna Array[J]. Journal of University of Electronic Science and Technology of China, 2017, 46(5): 692-696. doi: 10.3969/j.issn.1001-0548.2017.05.009

小规模天线阵列波束指向校准算法研究

doi: 10.3969/j.issn.1001-0548.2017.05.009
基金项目: 

the National Science Foundation of China 10876007

the National Science Foundation of China 61301056

详细信息
    作者简介:

    李岩(1984-), 男, 博士, 主要从事高集成度有源天线阵列方面的研究

  • 中图分类号: TN828

Optimization Algorithm of the Beam Direction Calibration for a Small Antenna Array

Funds: 

the National Science Foundation of China 10876007

the National Science Foundation of China 61301056

More Information
    Author Bio:

    LI Yan was born in 1984, male, his research interests include highly integrated active antenna array research

  • 摘要: 基于有源方向图叠加原理和杂草入侵优化算法对小规模天线阵列的波束指向进行了校准。对于小规模阵列,由于天线单元之间的互耦导致阵中每个单元的方向图各不相同,如果使用阵因子理论对其配相,阵列无法扫描到期望的波束指向。为了考虑互耦的的影响,利用有源方向图叠加原理合成整个阵列的方向图;再将杂草入侵优化算法和有源方向图叠加原理进行结合对每个单元的馈电相位进行优化。基于该混合算法,对一个7元平面阵列进行了优化,优化后的相位分布可以使该阵列扫描到期望的波束指向,解决了小规模阵列的波束指向偏差问题。
  • Figure  1.  Flowchart of IWO

    Figure  2.  Configuration of the small antenna array

    Figure  3.  Radiation pattern (presume to steer to 30°) of antenna array with the phase distribution of AF theory

    Figure  4.  Radiation pattern (presume to steer to 46°) of antenna array with the phase distribution of AF theory

    Figure  5.  Radiation pattern of antenna array with the optimized phase distribution

    Figure  6.  Radiation pattern of antenna array with digital phase shifter

    Table  1.   Parameters used in the IWO

    Number of initial population
    (n_ini)
    Maximum number of iterations
    (Iter_max)
    Maximum number of plants
    (P_max)
    Maximum number of seeds
    (S_max)
    30 300 30 5
    Minimum number of seeds
    (S_min)
    Nonlinear modulation index
    (N)
    Initial value of standard deviation
    (SD_initial)
    Final value of standard deviation
    (SD_final)
    0 3 8 0.1
    下载: 导出CSV

    Table  2.   Phase distribution for beam steering to (90°, 30°)

    Element number AF theory Phase/(°)
    Optimized using IWO
    Continuous Digital (5 bit)
    1 0 168.1 168.75
    2 −90 63.7 67.5
    3 −45 120.1 123.75
    4 45 −141 −146.25
    5 90 −70.7 −67.5
    6 45 −130.2 −135
    7 −45 118.5 123.75
    下载: 导出CSV

    Table  3.   Phase distribution for beam steering to (90°, 46°)

    Element number AF theory Phase/(°)
    Optimized using IWO
    Continuous Digital (5 bit)
    1 0 −1.9 0
    2 −129.5 177.1 180
    3 −64.7 −84.4 −90
    4 64.7 88.4 90
    5 129.5 178.1 180
    6 64.7 76.8 78.75
    7 −64.7 −101.4 −101.25
    下载: 导出CSV
  • [1] BALANIS C A. Antenna theory: Analysis and design[M]. 3rd ed. New Jersey, USA: John Wiley & Sons Inc, 2005.
    [2] POZAR D M. The active element pattern[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(8):1176-1178. doi:  10.1109/8.310010
    [3] ZHANG Shuai, GONG Shu-xi, GONG Qi, et al. Application of the active element pattern method for calculation of the scattering pattern[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10:83-86. doi:  10.1109/LAWP.2011.2111410
    [4] HE Qing-qiang, WANG Bing-zhong, SHAO Wei. Radiation pattern calculation for arbitrary conformal arrays that include mutual-coupling effect[J]. IEEE Antennas and Propagation Magazine, 2010, 52(2):57-63. doi:  10.1109/MAP.2010.5525566
    [5] OUYANG Jun, LUO Xuan, YANG Jie, et al. Analysis and synthesis of conformal conical surface linear phased array with volume surface integral equation+AEP (active Element Pattern) and INSGA-Ⅱ[J]. IET Microwaves, Antennas & Propagation, 2012, 6(11):1277-1285.
    [6] ALLARD R J, WERNER D H, WERNER P J L. Radiation pattern synthesis for arrays of conformal antennas mounted on arbitrarily-shaped three-Dimensional platforms using genetic algorithms[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(5):1054-1062. doi:  10.1109/TAP.2003.811510
    [7] LI Wen-tao, SHI Xiao-wei, HEI Yong-qiang, et al. A hybrid optimization algorithm and its application for conformal array pattern synthesis[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(10):3401-3406. doi:  10.1109/TAP.2010.2050425
    [8] MEHRABIAN A R, LUCAS C. A novel numerical optimization algorithm inspired from weed colonization[J]. Ecological Informatics, 2006, 1(4):355-366. doi:  10.1016/j.ecoinf.2006.07.003
    [9] KARIMKASHI S, KISHK A A. Invasive weed optimization and its features in electromagnetic[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(4):1269-1278. doi:  10.1109/TAP.2010.2041163
    [10] LI Yan, YANG Feng, OUYANG Jun, et al. Yagi-uda antenna optimization based on invasive weed optimization method[J]. Electromagnetics, 2011, 31(8):571-577. doi:  10.1080/02726343.2011.621108
    [11] MOHAMADI M F, KOMJANI N, MOUSAVI P. Application of invasive weed optimization to design a broadband patch antenna with symmetric radiation pattern[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10:1369-1372. doi:  10.1109/LAWP.2011.2177801
  • [1] XIAO Chuanhong, WU Zhenhua, LI Jielong, SHI Zongjun, ZHONG Renbin, LIU Diwei, ZHAO Tao, HU Min, LIU Shenggang.  Research on Terahertz Backward-Wave Oscillator Based on Photonic Column Array Slow-Wave Structure . 电子科技大学学报, 2022, 51(5): 702-708. doi: 10.12178/1001-0548.2022014
    [2] WANG Ziqing, TANG Dianhua, LI Fagen.  Identity-Based Encryption from Lattices with Small Cipher Size . 电子科技大学学报, 2022, 51(6): 913-920. doi: 10.12178/1001-0548.2022007
    [3] LI Peng, HU Jiang-ping, ZHANG Yu-ping.  Design and Analysis of Distributed Optimization Algorithm for Economic Dispatch Problem of Energy-Water Hybrid Networks . 电子科技大学学报, 2020, 49(5): 652-659, 665. doi: 10.12178/1001-0548.2020238
    [4] SHI Jian-ping, LI Pei-shen, LIU Guo-pin, LIU Peng.  Multi-Strategy Dynamic Fruit Fly Optimization Algorithm for Continuous Optimization Problems . 电子科技大学学报, 2020, 49(5): 718-731. doi: 10.12178/1001-0548.2019088
    [5] Jiang DENG, Yan-bin GE, You YU, Xiao-ju WANG.  Structural Design of LaB6 Composite Field Emission Array Cathode . 电子科技大学学报, 2018, 47(2): 311-316. doi: 10.3969/j.issn.1001-0548.2018.02.025
    [6] Sen GONG, Min HU, Ren-bin ZHONG, Xiao-xing CHENG, Ping ZHANG, Tao ZHAO, Sheng-gang LIU.  Surface Plasmon Polaritons Coupled from Nano-Slits Array Excited by Electron Beam . 电子科技大学学报, 2016, 45(4): 707-711. doi: 10.3969/j.issn.1001-0548.2016.04.025
    [7] 李献礼, 陈业纲.  FP-array在计算机犯罪挖掘中的应用 . 电子科技大学学报, 2009, 38(4): 592-595. doi: 10.3969/j.issn.1001-0548.2009.04.027
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  3623
  • HTML全文浏览量:  1126
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-20
  • 修回日期:  2017-04-26
  • 刊出日期:  2017-09-01

Optimization Algorithm of the Beam Direction Calibration for a Small Antenna Array

doi: 10.3969/j.issn.1001-0548.2017.05.009
    基金项目:

    the National Science Foundation of China 10876007

    the National Science Foundation of China 61301056

    作者简介:

    LI Yan was born in 1984, male, his research interests include highly integrated active antenna array research

  • 中图分类号: TN828

摘要: 基于有源方向图叠加原理和杂草入侵优化算法对小规模天线阵列的波束指向进行了校准。对于小规模阵列,由于天线单元之间的互耦导致阵中每个单元的方向图各不相同,如果使用阵因子理论对其配相,阵列无法扫描到期望的波束指向。为了考虑互耦的的影响,利用有源方向图叠加原理合成整个阵列的方向图;再将杂草入侵优化算法和有源方向图叠加原理进行结合对每个单元的馈电相位进行优化。基于该混合算法,对一个7元平面阵列进行了优化,优化后的相位分布可以使该阵列扫描到期望的波束指向,解决了小规模阵列的波束指向偏差问题。

English Abstract

李岩, 田步宁, 杨峰. 小规模天线阵列波束指向校准算法研究[J]. 电子科技大学学报, 2017, 46(5): 692-696. doi: 10.3969/j.issn.1001-0548.2017.05.009
引用本文: 李岩, 田步宁, 杨峰. 小规模天线阵列波束指向校准算法研究[J]. 电子科技大学学报, 2017, 46(5): 692-696. doi: 10.3969/j.issn.1001-0548.2017.05.009
LI Yan, TIAN Bu-ning, YANG Feng. Optimization Algorithm of the Beam Direction Calibration for a Small Antenna Array[J]. Journal of University of Electronic Science and Technology of China, 2017, 46(5): 692-696. doi: 10.3969/j.issn.1001-0548.2017.05.009
Citation: LI Yan, TIAN Bu-ning, YANG Feng. Optimization Algorithm of the Beam Direction Calibration for a Small Antenna Array[J]. Journal of University of Electronic Science and Technology of China, 2017, 46(5): 692-696. doi: 10.3969/j.issn.1001-0548.2017.05.009
  • Array factor (AF) theory is always used to estimate the performances of the antenna array[1]. For a specified beam direction, the phase distribution of each element can be calculated by the AF theory easily. It works well for the large antenna array with actual antenna element using this phase distribution, which is attributable to the same coupling environments of array elements. However, there is a discrepancy between the actual beam direction and desired direction for the small antenna array due to the mutual coupling, which will make the radiation pattern of each element in the antenna array to be totally different.

    With the active element pattern (AEP) method[2-5], the mutual coupling is considered, thus the far field pattern of antenna array can be calculated by the superposition of AEP. This assertion is verified by the numerical simulation, which means the radiation pattern of antenna array can be obtained with this method efficiently.

    The excitation including amplitude and phase for each element should be optimized to make the antenna array satisfy specified requirements such as beam steering and low side-lobe. Some analytical methods have been proposed[1]. However, it only can be used for the simple array configuration. Also, effects of the actual antenna element and mutual coupling are not considered at all. To tackle these deficiencies, a proper remedy must be developed. Globally optimized methods such as the genetic algorithm (GA) and particle swarm optimization (PSO) are proposed to address these issues[6-7]. GA is complicated to implement because it involves operations including the selection, crossover, and mutation. Though PSO did not suffers this problem, convergence of the PSO algorithm depends on the choice of boundary conditions and the maximum velocity. As we know, they are difficult to perceive, so it always makes the PSO be trapped in local minima.

    Invasive weed optimization (IWO)[8] method proposed by Mehrabian and Lucus in 2006, has been applied to antenna community for the synthesis of antenna array and antenna design[9-11]. It is found that IWO outperforms GA and PSO. In addition, IWO has the features of easy implementation and skipped local minima. Therefore, issues discussed above can be handled by IWO.

    In this paper, the phase distribution of small antenna array is optimized by the hybrid IWO-AEP. Since the mutual coupling is considered in AEP, the beam peak can steer to the desired direction accurately. Simultaneously, because the digital phase shifter is always employed to feed the antenna, the quantization errors are discussed either. It has little effect on the antenna performance, so the proposed antenna also has the feature of stability.

    • AEP defines the radiation pattern of the array when one radiating element is driven and all the others are terminated with matching load[3]. Because the mutual coupling is included in the AEP, far field pattern of the entire antenna array can be obtained accurately by the superstition of AEP. The total electric field can be expressed:

      $$ {{\mathit{\boldsymbol{E}}}_{T}}(\theta ,\varphi )=\sum\limits_{n=1}^{N}{{{\mathit{\boldsymbol{I}}}_{n}}}\times {{\mathit{\boldsymbol{E}}}_{n}}(\theta ,\varphi ) $$ (1)

      where ${{\mathit{\boldsymbol{E}}}_{T}}(\theta ,\varphi )$ defines the total electric field radiated by the array, ${{\mathit{\boldsymbol{I}}}_{n}}$ represents the excited current for the n-th element, ${{\mathit{\boldsymbol{E}}}_{n}}(\theta ,\varphi )$ denotes the electric field radiated by the n-th element, and N is the total elements number of the array.

    • Because IWO has been intensively studied in Ref. [8], only main steps of IWO are given in this paper. Namely,

      ① Population initialization

      ② Reproduction

      ③ Spatial dispersal

      ④ Competitive exclusion.

      The flowchart of IWO is shown in Fig. 1. Details of IWO and its application in electromagnetics community can be found in Refs. [8-9].

      Figure 1.  Flowchart of IWO

    • Configuration of antenna array is shown in Fig. 2. It consists of 7 conventional circularly polarized microstrip antennas and all of them are distributed with the circular ring configuration. Position of each element is also shown in Fig. 2 and the interspaces between elements are half wavelength.

      Figure 2.  Configuration of the small antenna array

      To make this antenna array steer to a desired direction, each element should be fed with a given phase distribution. If the theory of AF is applied to calculate the phase distribution, as shown in Fig. 3 and Fig. 4, there will be discrepancy for the beam direction when the actual antenna element is considered. The beam peak steers to 24° when the presumed one is 30°, while it steers to 34° when the presumed one is 46°. The discrepancy is caused by the mutual coupling, which will make the radiation pattern of each element in the array to be totally different.

      Figure 3.  Radiation pattern (presume to steer to 30°) of antenna array with the phase distribution of AF theory

      Figure 4.  Radiation pattern (presume to steer to 46°) of antenna array with the phase distribution of AF theory

      To overcome this problem, IWO is combined with AEP to optimize the phase distribution of the antenna array. Firstly, the radiation pattern of the antenna array is synthesized with the AEP. Then, IWO is used to optimize the phase excitation of each element. With this hybrid method, the antenna array can steer to the desired direction accurately and efficiently, since the mutual coupling is considered in AEP and it avoids the full wave simulation. The fitness function of IWO is defined as:

      $$ f=0.7\times \text{abs}(\theta -{{\theta }_{d}})+0.3\times \text{abs}(G-{{G}_{d}}) $$ (2)

      where ${{\theta }_{d}}$ defines the desired beam direction and ${{G}_{d}}$ denotes the desired gain.

      Parameters used in IWO are shown in table 1. After running the IWO, the optimized phase distribution is listed in Table 2 and Table 3. The radiation pattern with the optimized phase distribution is presented in Fig. 5. It is noted that the beam peak can steer to the desired direction accurately.

      Table 1.  Parameters used in the IWO

      Number of initial population
      (n_ini)
      Maximum number of iterations
      (Iter_max)
      Maximum number of plants
      (P_max)
      Maximum number of seeds
      (S_max)
      30 300 30 5
      Minimum number of seeds
      (S_min)
      Nonlinear modulation index
      (N)
      Initial value of standard deviation
      (SD_initial)
      Final value of standard deviation
      (SD_final)
      0 3 8 0.1

      Table 2.  Phase distribution for beam steering to (90°, 30°)

      Element number AF theory Phase/(°)
      Optimized using IWO
      Continuous Digital (5 bit)
      1 0 168.1 168.75
      2 −90 63.7 67.5
      3 −45 120.1 123.75
      4 45 −141 −146.25
      5 90 −70.7 −67.5
      6 45 −130.2 −135
      7 −45 118.5 123.75

      Table 3.  Phase distribution for beam steering to (90°, 46°)

      Element number AF theory Phase/(°)
      Optimized using IWO
      Continuous Digital (5 bit)
      1 0 −1.9 0
      2 −129.5 177.1 180
      3 −64.7 −84.4 −90
      4 64.7 88.4 90
      5 129.5 178.1 180
      6 64.7 76.8 78.75
      7 −64.7 −101.4 −101.25

      Figure 5.  Radiation pattern of antenna array with the optimized phase distribution

      For the engineering application, the digital phase shifter is always used to feed the antenna array, so the quantization error should be estimated. After discretizing the optimized phase with 5 bit phase shifter, as shown in Table 2 and Table 3, the simulated radiation pattern is shown in Fig. 6. It is observed that the quantization error has trivial effect on the antenna performances and the radiation pattern is almost remained with the digital phase distribution, which also demonstrates the stability of the proposed hybrid method.

      Figure 6.  Radiation pattern of antenna array with digital phase shifter

    • A small antenna array with 7 elements is designed to verify the proposed hybrid method. With the proposed hybrid method, beam direction of the array can precisely steer to the desired direction. The results obtained from the proposed method are compared with those from the commercial full wave solver software HFSS, and good agreements are achieved between them. Since the full wave simulation is avoided, the proposed hybrid method also has the advantage of high efficiency. Quantization error is also considered for the engineering application, which demonstrates the stability of the proposed method. In addition, the proposed method can be used for the arbitrary array configuration.

参考文献 (11)

目录

    /

    返回文章
    返回