Volume 49 Issue 4
Jul.  2020
Article Contents

YU Miao, WANG Ze, SHAO Jun-ze, ZHANG Wan-li. Effect of MXene Modification Layer on Perovskite Solar Cells[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(4): 631-635. doi: 10.12178/1001-0548.2020076
Citation: YU Miao, WANG Ze, SHAO Jun-ze, ZHANG Wan-li. Effect of MXene Modification Layer on Perovskite Solar Cells[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(4): 631-635. doi: 10.12178/1001-0548.2020076

Effect of MXene Modification Layer on Perovskite Solar Cells

doi: 10.12178/1001-0548.2020076
  • Received Date: 2020-02-24
  • Rev Recd Date: 2020-04-09
  • Available Online: 2020-07-29
  • Publish Date: 2020-07-10
  • MXenes, a new and intriguing family of two-dimensional (2D) materials, have recently attracted considerable attention owing to their excellent properties such as high electrical conductivity and mobility, tunable structure, and termination groups. In this study, Ti3C2Tx (a typical MXene material) was incorporated as an interface modification layer between the electronic transport layer and the perovskite absorber layer of perovskite solar cells, with the aim of efficiency enhancement. Results show that the average grain size of the perovskite increased from 0.46 to 1.16 μm after the introduction of Ti3C2Tx compared with the pristine sample, and the power conversion efficiency was improved from 15.78% to 19.39%. This work brings opportunities for the research of MXene as potential materials in high-performance perovskite solar cells
  • [1] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. doi:  10.1021/ja809598r
    [2] National Renewable Energy Laboratory. Best research-cell efficiency chart[EB/OL]. [2020-01-13]. https://www.nrel.gov/pv/cell-efficiency.html.
    [3] ZHANG F, ZHU K. Additive engineering for efficient and stable perovskite solar cells[J]. Advanced Energy Materials, 2020, 10: 1902579.
    [4] CHEN S, SHI G. Two-dimensional materials for halide perovskite-based optoelectronic devices[J]. Advanced Materials, 2017, 29(24): 1605448. doi:  10.1002/adma.201605448
    [5] SHEN D, ZHANG W, XIE F, et al. Graphene quantum dots decorated TiO2 mesoporous film as an efficient electron transport layer for high-performance perovskite solar cells[J]. Journal of Power Sources, 2018, 402: 320-326. doi:  10.1016/j.jpowsour.2018.09.056
    [6] HADADIAN M, CORREA-BAENA J P, GOHARSHADI E K, et al. Enhancing efficiency of perovskite solar cells via n-doped graphene: Crystal modification and surface passivation[J]. Advanced Materials, 2016, 28(39): 8681-8686. doi:  10.1002/adma.201602785
    [7] GUO Z, GAO L, XU Z, et al. High electrical conductivity 2D mxene serves as additive of perovskite for efficient solar cells[J]. Small, 2018, 14(47): 1802738. doi:  10.1002/smll.201802738
    [8] YANG L, DALLAGNESE Y, HANTANASIRISAKUL K, et al. SnO2–Ti3C2 MXene electron transport layers for perovskite solar cells[J]. Journal of Materials Chemistry A, 2019, 7(10): 5635-5642. doi:  10.1039/C8TA12140K
    [9] AGRESTI A, PAZNIAK A, PESCETELLI S, et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells[J]. Nature Materials, 2019, 18(11): 1228-1234. doi:  10.1038/s41563-019-0478-1
    [10] CHEN T, TONG G, XU E, et al. Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability[J]. Journal of Materials Chemistry A, 2019, 7(36): 20597-20603. doi:  10.1039/C9TA06035A
    [11] HUANG L, ZHOU X, XUE R, et al. Low-temperature growing anatase TiO2/SnO2 multi-dimensional heterojunctions at mxene conductive network for high-efficient perovskite solar cells[J]. Nano-Micro Letters, 2020, 12(1): 44. doi:  10.1007/s40820-020-0379-5
    [12] DILLON A D, GHIDIU M J, KRICK A L, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide[J]. Advanced Functional Materials, 2016, 26(23): 4162-4168. doi:  10.1002/adfm.201600357
    [13] GENG L, ZHU P, WEI Y, et al. A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding[J]. Cellulose, 2019, 26(4): 2833-2847. doi:  10.1007/s10570-019-02284-5
    [14] LONG M, ZHANG T, XU W, et al. Large-grain formamidinium PbI3−x Brx for high-performance perovskite solar cells via intermediate halide exchange[J]. Advanced Energy Materials, 2017, 7(12): 1601882. doi:  10.1002/aenm.201601882
    [15] GIBBS J W. On the equilibrium of heterogeneous substances[J]. American Journal of Science, 1878(96): 441-458.
    [16] PANG J, MENDES R G, BACHMATIUK A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019, 48(1): 72-133. doi:  10.1039/C8CS00324F
    [17] LI S S, CHANG C H, WANG Y C, et al. Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles[J]. Energy & Environmental Science, 2016, 9(4): 1282-1289.
    [18] SHI J, DONG J, LV S, et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property[J]. Applied Physics Letters, 2014, 104(6): 063901. doi:  10.1063/1.4864638
    [19] WANG K, LIU C, YI C, et al. Efficient perovskite hybrid solar cells via ionomer interfacial engineering[J]. Advanced Functional Materials, 2015, 25(44): 6875-6884. doi:  10.1002/adfm.201503160
    [20] HE Z, ZHONG C, HUANG X, et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells[J]. Advanced Materials, 2011, 23(40): 4636-4643. doi:  10.1002/adma.201103006
    [21] FEI C, LI B, ZHANG R, et al. Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film[J]. Advanced Energy Materials, 2017, 7(9): 1602017. doi:  10.1002/aenm.201602017
    [22] WANG F, CAO Y, CHEN C, et al. Materials toward the upscaling of perovskite solar cells: Progress, challenges, and strategies[J]. Advanced Functional Materials, 2018, 28(52): 1803753. doi:  10.1002/adfm.201803753
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(2)

Article Metrics

Article views(6328) PDF downloads(73) Cited by()

Related
Proportional views

Effect of MXene Modification Layer on Perovskite Solar Cells

doi: 10.12178/1001-0548.2020076

Abstract: MXenes, a new and intriguing family of two-dimensional (2D) materials, have recently attracted considerable attention owing to their excellent properties such as high electrical conductivity and mobility, tunable structure, and termination groups. In this study, Ti3C2Tx (a typical MXene material) was incorporated as an interface modification layer between the electronic transport layer and the perovskite absorber layer of perovskite solar cells, with the aim of efficiency enhancement. Results show that the average grain size of the perovskite increased from 0.46 to 1.16 μm after the introduction of Ti3C2Tx compared with the pristine sample, and the power conversion efficiency was improved from 15.78% to 19.39%. This work brings opportunities for the research of MXene as potential materials in high-performance perovskite solar cells

YU Miao, WANG Ze, SHAO Jun-ze, ZHANG Wan-li. Effect of MXene Modification Layer on Perovskite Solar Cells[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(4): 631-635. doi: 10.12178/1001-0548.2020076
Citation: YU Miao, WANG Ze, SHAO Jun-ze, ZHANG Wan-li. Effect of MXene Modification Layer on Perovskite Solar Cells[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(4): 631-635. doi: 10.12178/1001-0548.2020076
  • 有机无机杂化钙钛矿太阳能电池(PSCs)具有高能量转换效率、低成本和制备工艺简单等优良特性,引发了光电技术领域的研究热潮。短短的10年时间,PSCs的光电转换效率(PCE)已从3.8%[1-2]提高到25.2%[3]。然而,作为一种薄膜太阳能电池,PSCs各功能层之间的接触界面依然存在,因此,进行界面修饰与调控是抑制载流子在界面处的复合速率、提升器件光电转化效率的有效手段。二维材料(石墨烯及其衍生物、单层或多层过渡金属硫化物、金属纳米片等) 由于具备出色的光学、电学、热学、机械和催化特性[4],常被用于改善钙钛矿材料的形貌和结晶度,提供一个高效的电荷收集通道,促进从钙钛矿层到电子传输层的电子提取[5]。如文献[6]将氮掺杂还原氧化石墨烯(N-RGO)掺入FA0.85MA0.15Pb(I0.85Br0.15)3光吸收层,增大了钙钛矿晶粒尺寸,钝化了表面缺陷,同时改善了开路电压、短路电流密度和填充因子这3个关键参数,为制备高效且无迟滞效应的PSCs提供了新的方向。文献[5]将石墨烯量子点(GQDs)修饰的介孔TiO2薄膜作为钙钛矿太阳能电池的电子传输层(ETL),利用GQDs超高的导电性能以提升ETL对光生电子的抽取、传输能力,也使得器件的光电流显著提升,钙钛矿太阳能电池的PCE超过20%。

    过渡金属碳化物和氮化物(MXene)作为二维材料家族的新成员,一般由氢氟酸(HF)或原位生成的HF对MAX相的A(Al、Sn等)层进行选择性腐蚀而得到的层状结构(其通式为Mn+1XnTx)[7],拥有比还原氧化石墨烯更高的电导率,同时在可见光范围内的吸光度更低[8]。文献[7]将MXene掺入钙钛矿光吸收层,显著提升了甲基胺碘化铅(CH3NH3PbI3)的晶粒尺寸,并加速电荷转移,电池的性能提升了12%。文献[8]采用MXene掺杂氧化锡(SnO2)作为电子传输层,增强了ETL/钙钛矿界面的电子提取、电子迁移率,降低了电子转移电阻,从而提高了光电流。文献[9]使用具有不同终止基(Tx)的MXene来调节钙钛矿光吸收层和TiO2电子传输层(ETL)的功函数(WF),并对钙钛矿/ETL界面进行了界面修饰,显著提高了钙钛矿太阳能电池的性能,并降低了迟滞。文献[10]将MXene纳米片用作全无机CsPbBr3光吸收层和碳电极中间的界面修饰层,优化了能级匹配,加速空穴提取,减少钙钛矿/碳电极界面的载流子复合,显著降低了CsPbBr3薄膜的深陷阱缺陷。文献[11]设计了一种由TiO2、SnO2和MXene组成的多维导电异质结,并将其作为电子传输层,提高了钙钛矿结晶度,同时为器件的高效、快速传输提供了更多的载流子,制备的太阳能电池性能和稳定性均有提升。

    Ti3C2Tx是一种典型的MXene,具有许多优异的性质,包括高电子导电性、高迁移率和高电荷载流子密度等[12],本文将Ti3C2Tx纳米片用作SnO2电子传输层和钙钛矿光吸收层中间的界面修饰层。结果表明,Ti3C2Tx界面修饰层可以显著地提高钙钛矿的晶粒尺寸,提高电荷提取能力,获得了19.39%的光电转换效率。

    • ITO/Glass基片(10 ohm·sq−1; 15 mm×15 mm),购自深圳华宇联合科技有限公司;15% SnO2纳米胶水溶液,购自Alfa Aesar公司;无水N,N-二甲基甲酰胺(DMF)、氯苯(CB)、异丙醇(IPA)、碘化铅(PbI2)、无水乙腈,均购自Sigma-Aldrich公司,碘甲胺(MAI)、碘甲脒(FAI)、溴甲胺(MABr)、Spiro-OMeTAD、Li-TFSI、tBP,均购买自西安宝莱特光电材料有限公司,Ti3C2Tx按照文献[13]所述方法合成。

    • 器件结构如图1所示,依次为ITO、SnO2、Ti3C2Tx、FAxMA1-xPbI3-yBry、Spiro-OMeTAD、Au。首先,将ITO导电玻璃基片依次在去污剂、去离子水和异丙醇中超声清洗20 min。将稀释后的SnO2纳米胶水溶液在空气中以3000 r·m–1的速度旋涂在清洁后的ITO基片上,并在150 ℃条件下退火30 min。然后,以4000 r·m–1的速度在其上旋涂一层Ti3C2Tx的DMF液膜。将上述旋涂有SnO2/Ti3C2Tx的ITO基片和PbI2前驱体溶液放在70 ℃热台上预热,后将PbI2前驱体溶液以1500 r·m–1的速度旋涂在基底上,并放在70 ℃热台上退火10 s。将铵盐溶液迅速以1700 r·m–1旋涂在PbI2薄膜上,并转移至150 ℃烘箱中退火15 min得到钙钛矿薄膜。随后在其上以3000 r·m–1的速度旋涂Spiro-OMeTAD前驱体溶液,旋涂结束后转移到干燥空气中氧化24 h。将上述薄膜转移到蒸镀机内,抽真空到3×10−4 Pa压力下蒸镀100 nm Au作电极层。

    • 使用FEI Inspect F50扫描电子显微镜测得钙钛矿薄膜表面的SEM图像;使用强度为AM 1.5 G、100 mW/cm2的太阳光模拟器光源和Keithley 2400数字表测得钙钛矿太阳能电池的器件性能曲线;使用Keithley 2400数字表测得钙钛矿太阳能电池在−2~2 V的暗电流;使用QTEST HIFINITY 5外量子效率测试太阳能电池的外量子效率(EQE)。

    • 图2是参比电池和Ti3C2Tx修饰的电池钙钛矿薄膜AFM图,表1是通过NanoMeasurer统计出的晶粒尺寸数据。参比电池的钙钛矿晶粒最大粒径为0.87 μm,平均粒径为0.46 μm,经过Ti3C2Tx修饰生长的钙钛矿薄膜晶粒尺寸更大,尺度更均匀,最大粒径为1.77 μm,平均粒径1.16 μm,这表明Ti3C2Tx修饰有益于钙钛矿晶粒尺寸增大。

      太阳能电池钙钛矿晶粒尺寸/μm
      最大粒径平均粒径最小粒径
      无 Ti3C2Tx0.870.460.18
      有 Ti3C2Tx1.771.160.60

      通常,在钙钛矿多晶薄膜的生长过程中,需要减少成核中心,同时减缓晶体生长速率,这样晶粒才能够充分长大[14]。在晶体生长过程中,异相成核优先于均相成核,其中,由于液−固界面的润湿性,液−固界面的成核势垒比远离该界面的区域要低得多[15]。当钙钛矿前驱液旋涂在SnO2/Ti3C2Tx表面后,会优先在界面处成核。而Ti3C2Tx表面含有丰富的O、OH、F等终止基[16],碱性F可能使CH3NH3(MA)的氢原子发生质子化,从而形成F与MA的相互作用。此外,OH可能与MAI相互作用,形成O—H---I范德瓦尔斯相互作用[7]。由于Ti3C2Tx与MAI之间的相互作用,抑制了Ti3C2Tx表面形成的晶核数量,延迟了成核过程[17]。如果没有Ti3C2Tx修饰层,会在SnO2表面生成更多的核。由于采用Ti3C2Tx修饰的钙钛矿薄膜产生的原子核较少,晶体生长比原始薄膜慢,可以获得较大的钙钛矿晶体。因此,以Ti3C2Tx修饰可以有效地提高钙钛矿薄膜的晶粒尺寸。

    • 暗电流可以有效反映钙钛矿电池内部电荷复合的情况,为此,本文进一步研究了参比电池和Ti3C2Tx修饰电池在暗态条件下的电流密度−电压曲线,如图3所示。对于太阳能电池而言,暗电流主要包括反向饱和电流、体漏电流和层漏电流,暗电流越小越好。

      可以看出,Ti3C2Tx修饰电池的暗电流明显小于参比器件,这说明Ti3C2Tx修饰电池界面层的引入有效降低了器件的漏电流。为了更深入的了解电池的光电特性,本文采用单异质结钙钛矿太阳能电池模型进行分析,其I−V特性可以被描述为:

      式中,J是一定偏压V下的负载电流;JL是光生电流密度;J0是反向饱和电流密度;RS是串联电阻;Rsh是并联电阻;A是异质结的理想因子;KB是玻尔兹曼常数;T是绝对温度;e是单个电荷的电量。当Rsh非常大时,根据式(1)可以推导出式(2)和式(3):

      理想因子和反向饱和电流密度可以由式(2)和(3)线性拟合取斜率和截距得出。参比电池在暗态条件下A=1.95,J0=9.88 × 10−9 mA·cm−2,Ti3C2Tx修饰电池在暗态条件下A=1.87,J0=1.52 × 10−9 mA·cm−2。理想因子与载流子的复合有关,通常情况下,A的值在1~2之间,当二极管电流由中性区扩散电流主导时,A接近于1。当二极管电流由空间电荷区复合电流主导[18]时,A接近于2。当A介于1~2之间时,两种机制同时存在。在本文中,参比电池和Ti3C2Tx修饰电池理想因子都处在1~2之间,且Ti3C2Tx修饰电池更接近于1,说明Ti3C2Tx修饰后器件的缺陷态减少。同时,Ti3C2Tx修饰电池的反向饱和电流密度也小于参比电池,反向饱和电流是由少子漂移形成,反向饱和电流密度越低越好。暗电流的测试证明了Ti3C2Tx修饰的引入很好地改善了电子在钙钛矿和SnO2界面处的传输和收集效率,器件的填充因子和开路电压进而得到了提升[19-20]

    • 图4是Ti3C2Tx修饰的钙钛矿太阳能电池和参比电池的电流密度—电压(J−V)曲线,其性能如表2所示。参比电池的开路电压(Voc)为1.05 V,短路电流密度(Jsc)为23.04 mA·cm−2,填充因子(FF)为65.15%,光电转换效率(PCE)为15.78 %。而经过Ti3C2Tx修饰的电池Voc为1.07 V,Jsc为24.05 mA·cm−2,FF为75.48 %,PCE为19.39%。可以看出,经过Ti3C2Tx修饰的电池,VocJsc、FF全面提升,进而促进电池的性能相对参比电池提升了23%。

      图5是Ti3C2Tx修饰的钙钛矿太阳能电池和参比电池的外量子效率(EQE)响应曲线。可以看出,两种电池在400~800 nm的可见光和近红外区都有很不错的光电响应。Ti3C2Tx修饰电池与参比电池相比,EQE值更高,尤其是在400~650 nm波长范围内,EQE值超过了80%,说明Ti3C2Tx修饰的电池光伏性能更优。此外,通过EQE曲线积分得到的电流密度Jsc,Ti3C2Tx修饰的电池优于参比电池,这与通过J−V测试得到的规律一致。

      太阳能电池Voc/VJsc/mA·cm−2FF/%PCE/%
      无Ti3C2Tx1.0523.0465.1515.78
      有Ti3C2Tx1.0724.0575.4819.39

      通常,高结晶质量的大尺寸晶粒,能有效地增加光吸收率,与图5的结论一致,减少由晶界引入的缺陷浓度,获得高效的光捕获能力、超快的载流子输运和抑制离子迁移等性能[21],从而降低复合损耗[22],最终在降低电压损失的同时,提升了短路电流。而Ti3C2Tx的高电导率,能够有效提升界面间电荷传输特性,提升串联电阻,降低并联电阻,进而提升填充因子,使得钙钛矿薄膜具有更好的光电性能。

    • 本文引入二维Ti3C2Tx MXene作为SnO2电子传输层和钙钛矿光吸收层之间的界面修饰层,利用Ti3C2Tx表面丰富的F、OH基团,与MAI相互作用,延迟了钙钛矿晶粒的成核速率,制备了平均粒径1.16 μm、最大粒径1.77 μm的高质量钙钛矿晶粒。同时,有效提升了电池的电荷输运能力,减少了非辐射复合。本文制备的钙钛矿太阳能电池开路电压、短路电流密度和填充因子均有提升,光电转换效率从15.78%提升到19.39%,获得了高性能的钙钛矿太阳能电池。

Reference (22)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return