Volume 51 Issue 5
Sep.  2022
Article Contents

HUANG Yixuan, HU Su, YE Qibin, HU Zelin. Range Processing Analysis for RadCom Based on Continuous-Wave[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(5): 688-693. doi: 10.12178/1001-0548.2021246
Citation: HUANG Yixuan, HU Su, YE Qibin, HU Zelin. Range Processing Analysis for RadCom Based on Continuous-Wave[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(5): 688-693. doi: 10.12178/1001-0548.2021246

Range Processing Analysis for RadCom Based on Continuous-Wave

doi: 10.12178/1001-0548.2021246
  • Received Date: 2021-09-21
  • Rev Recd Date: 2022-03-15
  • Available Online: 2022-10-25
  • Publish Date: 2022-09-25
  • With the development of science and technology, the demands of Internet of vehicle (IoV) and 6G for the fusion of communications and radar (RadCom) technology is gradually increasing. Orthogonal frequency division multiplexing (OFDM) RadCom systems based on sharing continuous-wave have two range processing methods: one based on the periodic autocorrelation function (PACF) and the other based on the frequency domain element level division. In range processing, these two methods have different effects on the received noise, resulting in the difference of radar performance. By analyzing the equivalent noise amplitude amplification factor and relevant sidelobe based on PACF and frequency domain element level division, this paper introduces the calculation method of critical signal-to-noise ratio (SNR) of these two range processing methods. Finally, the effectiveness of the proposed critical SNR calculation method is verified by the simulation evaluation of radar detection performance in the IoV scenario.
  • [1] STURM C, WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236-1259. doi:  10.1109/JPROC.2011.2131110
    [2] HUANG Y X, HU S, MA S Y, et al. Designing low-PAPR waveform for OFDM-based RadCom systems[J]. IEEE Transactions on Wireless Communications, 2022.
    [3] STURM C, PANCERA E, ZWICK T, et al. A novel approach to OFDM radar processing[C]//Radar Conference. Pasadena: IEEE, 2009: 1-4.
    [4] 左家骏, 杨瑞娟, 李晓柏, 等. 基于索引调制OFDM雷达通信共享信号压缩感知方法研究[J]. 电子与信息学报, 2020, 42(12): 2976-2983. doi:  10.11999/JEIT190740

    ZUO J J, YANG R J, LI X B, et al. Compressed sensing method for joint radar and communication system based on OFDM-IM signal[J]. Journal of Electronics and Information Technology, 2020, 42(12): 2976-2983. doi:  10.11999/JEIT190740
    [5] 肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41(3): 739-750. doi:  10.11999/JEIT180515

    XIAO B, HUO K, LIU Y X. Development and prospect of radar and communication integration[J]. Journal of Electronics and Information Technology, 2019, 41(3): 739-750. doi:  10.11999/JEIT180515
    [6] 刘冰凡, 陈伯孝. 基于OFDM-LFM信号的MIMO雷达通信一体化信号共享设计研究[J]. 电子与信息学报, 2019, 41(4): 801-808. doi:  10.11999/JEIT180547

    LIU B F, CHEN B X. Integration of MIMO radar and communication with OFDM-LFM signals[J]. Journal of Electronics and Information Technology, 2019, 41(4): 801-808. doi:  10.11999/JEIT180547
    [7] 刘永军, 廖桂生, 杨志伟, 等. 一种超分辨OFDM雷达通信一体化设计方法[J]. 电子与信息学报, 2016, 38(2): 425-433.

    LIU Y J, LIAO G S, YANG Z W, et al. A super-resolution design method for integration of OFDM radar and communication[J]. Journal of Electronics and Information Technology, 2016, 38(2): 425-433.
    [8] HUANG Y X, HU S, MA S Y, et al. Constant envelope OFDM RadCom fusion system[J]. EURASIP Journal on Wireless Communications and Networking (JWCN), 2018, DOI:  https://doi.org/10.1186/s13638-018-1105-6.
    [9] HUANG Y X, HUANG D, LUO Q, et al. NC-OFDM RadCom system for electromagnetic spectrum interference[C]//IEEE 17th Int Conf on Comm Tech (ICCT 2017). Chengdu: IEEE, 2017: 877-881.
    [10] HUANG Y X, LUO Q, MA S Y, et al. Constant envelope OFDM RadCom system[C]//6th Int Conf on Comm, Signal Process & Sys (CSPS 2017). Singapore: Springer, 2017: 896-904.
    [11] LIU X, HUANG T Y, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Trans on Signal Process, 2020, 68: 3929-3944. doi:  10.1109/TSP.2020.3004739
    [12] DONG F W, WANG W, HU Z Y, et al. Low-complexity beamformer design for joint radar and communications systems[J]. IEEE Comm Letters, 2021, 25(1): 259-263. doi:  10.1109/LCOMM.2020.3024574
    [13] FENG Z Y, FANG Z X, WEI Z Q, et al. Joint radar and communication: A survey[J]. China Communications, 2020, 17(1): 1-27.
    [14] LIU F, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Trans on Comm, 2020, 68(6): 3834-3862. doi:  10.1109/TCOMM.2020.2973976
    [15] DOKHANCHI S H, MYSORE B S, MISHRA K V, et al. A mmWave automotive joint radar-communications system[J]. IEEE Trans on Aero Elec Sys, 2019, 55(3): 1241-1260. doi:  10.1109/TAES.2019.2899797
    [16] WEINSTEIN S B, EBERT P M. Data transmission by frequency division multiplexing using the discrete fourier transform[J]. IEEE Trans on Comm Tech, 1971, 19(5): 628-634. doi:  10.1109/TCOM.1971.1090705
    [17] HE H, LI J, STOICA P. Waveform design for active sensing systems-a computational approach[M]. Cambridge: Cambridge University Press, 2012.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  / Tables(2)

Article Metrics

Article views(4466) PDF downloads(56) Cited by()

Related
Proportional views

Range Processing Analysis for RadCom Based on Continuous-Wave

doi: 10.12178/1001-0548.2021246

Abstract: With the development of science and technology, the demands of Internet of vehicle (IoV) and 6G for the fusion of communications and radar (RadCom) technology is gradually increasing. Orthogonal frequency division multiplexing (OFDM) RadCom systems based on sharing continuous-wave have two range processing methods: one based on the periodic autocorrelation function (PACF) and the other based on the frequency domain element level division. In range processing, these two methods have different effects on the received noise, resulting in the difference of radar performance. By analyzing the equivalent noise amplitude amplification factor and relevant sidelobe based on PACF and frequency domain element level division, this paper introduces the calculation method of critical signal-to-noise ratio (SNR) of these two range processing methods. Finally, the effectiveness of the proposed critical SNR calculation method is verified by the simulation evaluation of radar detection performance in the IoV scenario.

HUANG Yixuan, HU Su, YE Qibin, HU Zelin. Range Processing Analysis for RadCom Based on Continuous-Wave[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(5): 688-693. doi: 10.12178/1001-0548.2021246
Citation: HUANG Yixuan, HU Su, YE Qibin, HU Zelin. Range Processing Analysis for RadCom Based on Continuous-Wave[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(5): 688-693. doi: 10.12178/1001-0548.2021246
  • 随着电子信息技术的快速发展,无线通信和雷达探测在频段使用[1-2]、硬件/系统架构[3-4]以及信号处理[5-6]方面都趋于相似。综合考虑频谱效率[7-8]、硬件成本效益[9-10]和新业务应用[11-12],未来智能车联网(internet of vehicles, IoV)和第六代无线通信(the sixth generation, 6G)对基于连续波正交频分复用(orthogonal frequency division multiplexing, OFDM)的通信雷达一体化(fusion of communications and radar, RadCom)技术的需求持续增长[13-14]。不同RadCom应用场景所需的RadCom技术与参数不同[15],这对RadCom技术的进一步发展提出了挑战。

    在IoV交通场景中,车载的短距探测需求要求OFDM RadCom系统采用连续波体制。基于连续波的雷达距离处理有两种方式:1)基于周期自相关函数(periodic auto-correlation function, PACF)的距离处理方式[2];2)基于频域元素级除法的距离处理方式[1]。在雷达处理中,这两种距离处理方式对接收噪声具有不同的影响。基于PACF方式在接收信号中提取回波时,对噪声未造成影响。而当频域符号采用非恒模调制并且在频域进行除法时,基于频域元素级除法方式不可避免地对噪声造成了影响,即噪声被放大或缩小,进而导致距离探测性能受到影响。当采用非恒模符号调制时,这两种距离处理方式的结果并不相同。因此,研究基于PACF和基于频域元素级除法这两种距离处理方式对OFDM RadCom探测性能的影响,对未来智能IoV和6G具有重要指导意义。

    基于连续波的OFDM RadCom的距离处理关键在于接收端相关处理。本文主要贡献在于:以相关结果的旁瓣平均幅度为标准,提出了基于PACF与基于频域元素级除法这两种距离处理方式的临界信噪比(signal to noise ratio, SNR)计算方法。

    • 基于连续波和波形共用体制的OFDM RadCom系统的发射端和接收端与传统OFDM完全一致,不同之处在于增加了雷达处理端[1]。在雷达处理端,对发射与接收频域符号进行处理以获得目标距离信息。

    • $N$为子载波数,${\boldsymbol{X}}$为长为$N$的功率归一化频域OFDM符号,其元素$X\left[ k \right]$为正交幅度调制(quadrature amplitude modulation, QAM)符号。则频域OFDM符号的平均功率${P_{\boldsymbol{X}}} = 1$${\boldsymbol{x}}$为时域OFDM信号,其元素表示为[16]

      式中,$n = 0,1,2, \cdots ,N - 1$。由此可得,时域信号平均功率${P_{\boldsymbol{X}}} = 1$。设循环前缀(cyclic prefix, CP)长度为${N_{{\text{cp}}}}$,则$ {{\boldsymbol{x}}_{{\text{cp}}}} = $ $[ {x[ { - {N_{{\text{cp}}}}} ],x[ { - {N_{{\text{cp}}}} + 1} ], \cdots ,} { {x[ {N - 1} ]} ]^{\text{T}}}$为加CP后的完整OFDM信号,当$n < 0$时,满足$x\left[ n \right] = $ $x\left[ {N + n} \right]$${\left( \cdot \right)^{\text{T}}}$为转置运算。

      ${{\boldsymbol{x}}_{{\text{cp}}}}$被目标反射后经过$L$延迟到达雷达接收机,且满足$L \leqslant {N_{{\text{cp}}}}$。假设忽略电磁波传播能量衰减,则雷达接收机接收的去除CP的回波信号为:

      式中,${\boldsymbol{f}} = \left\{ {\phi \left[ n \right]} \right\}_{n = 0}^{N - 1}$,其元素$\phi \left[ n \right]$为复加性高斯白噪声(additive white gaussian noise, AWGN)项。

      ${\boldsymbol{Y}}$${\boldsymbol{y}}$的频域符号,即${\boldsymbol{Y}} = {\text{DFT}}\left\{ {\boldsymbol{y}} \right\}$,其中${\text{DFT}}\left\{ \cdot \right\}$为满足Parseval定理的离散傅里叶变换(discrete Fourier transform, DFT)。当噪声项和信号传播能量衰减被忽略时,$ {\boldsymbol{y}} $${\boldsymbol{x}}$$L$位循环移位,其元素为:

      式中,$n = 0,1,2, \cdots ,N - 1$$\bmod \left( \cdot \right)$为求余运算。由上式可知,$Y\left[ k \right] = X\left[ k \right]{{\rm{e}}^{{{ - {\rm{j}}2{\text π}kL} \mathord{\left/ {\vphantom {{ - {\rm{j}}2{\text π}kL} N}} \right. } N}}}$$k = 0,1,2, \cdots ,N - 1$。令${{\boldsymbol{k}}_R} = \left\{ {{k_R}\left[ k \right]} \right\}_{k = 0}^{N - 1}$${k_R}\left[ k \right] = {{\rm{e}}^{{{ - {\rm{j}}2{\text π}kL} \mathord{\left/ {\vphantom {{ - {\rm{j}}2{\text π}kL} N}} \right. } N}}}$,则有:

      式中,$\left( \cdot \right)$为元素级乘法。

    • 时域信号${\boldsymbol{x}}$的PACF定义为[17]

      式中,$k = - (N - 1),- (N - 2), \cdots ,N - 1$${\left( \cdot \right)^ * }$为共轭运算。由此可知,$r\left[ 0 \right] = N$$r\left[ k \right] = {r^ * }\left[ { - k} \right] = {r^ * }\left[ {N - k} \right]$$k = 0,1,2,\cdots , N- 1$。设${{\boldsymbol{r}}_{{\boldsymbol{x}},{\boldsymbol{x}}}} = \left\{ {r\left[ n \right]} \right\}_{n = 0}^{N - 1}$。为方便描述波形的PACF性质,定义PACF的综合旁瓣水平(integrated sidelobe level, ISL)与品质因子(merit factor, MF)分别为[17]

      由此可知,PACF的综合旁瓣越高,ISL越大,则MF越小。

    • ${{\boldsymbol{r}}_{{\boldsymbol{y}},{\boldsymbol{x}}}}$$k \in \left[ {0,N - 1} \right]$时的${\boldsymbol{y}}$${\boldsymbol{x}}$的PACF。令${{\boldsymbol{R}}_{{\boldsymbol{y}},{\boldsymbol{x}}}}$${{\boldsymbol{r}}_{{\boldsymbol{y}},{\boldsymbol{x}}}}$的DFT变换,则其元素可写为:

      式中,$m = 0,1,2, \cdots ,N - 1$。由上式可知,${{\boldsymbol{R}}_{{\boldsymbol{y}},{\boldsymbol{x}}}}$可由${\boldsymbol{Y}}$${\boldsymbol{X}}$的共轭进行元素级乘法得到。故${{\boldsymbol{r}}_{{\boldsymbol{y}},{\boldsymbol{x}}}}$可通过对${\boldsymbol{Y}}$${{\boldsymbol{X}}^*}$的元素级乘积进行IDFT变换得到,即:

      式中,${\text{IDFT}}\left\{ \cdot \right\}$表示满足Parseval定理的离散傅里叶逆变换(inverse discrete Fourier transform, IDFT)。令相关结果${{\boldsymbol{d}}_1}{\text{ = IDFT}}\left\{ {{\boldsymbol{Y}} \cdot {{\boldsymbol{X}}^*}} \right\}$,其元素为:

      式中,$k = 0,1,2, \cdots ,N - 1$。则当$L \leqslant {N_{{\text{cp}}}}$时,在相关结果${{\boldsymbol{d}}_1}$中,在$k = L$处出现峰值。当AWGN项被重新纳入考虑时,设$L = 0$,则相关结果${{\boldsymbol{d}}_1}$可重新写为:

      式中,$\alpha $$ {{\boldsymbol{X}}^*} $导致的周期自相关等效噪声幅度放大因子,即:

      由此可见,基于PACF的距离处理相关结果${{\boldsymbol{d}}_1}$的旁瓣高度受PACF的旁瓣高度和未被放大的噪声项($\alpha = 1$)两种因素影响。

    • 对于经典的基于连续波体制的OFDM RadCom系统,其雷达距离处理采用基于频域元素级除法的距离处理方式[1]。假设忽略噪声项与信号传播能量衰减,在频域将频域接收信号${\boldsymbol{Y}}$与频域信号${\boldsymbol{X}}$做元素级除法,再进行IDFT变换,则得到相关结果${{\boldsymbol{d}}_2} = {\text{IDFT}}\left\{ {{\boldsymbol{Y}}./{\boldsymbol{X}}} \right\}$,其中$\left( {./} \right)$为元素级除法运算,其元素为:

      式中,$k = 0,1,2, \cdots ,N - 1$。则当$L \leqslant {N_{{\text{cp}}}}$时,在相关结果${{\boldsymbol{d}}_2}$中,在$k = L$处出现峰值,在$k \ne L$处为0。当AWGN项被重新纳入考虑时,设$L = 0$,则相关结果${{\boldsymbol{d}}_2}$重新写为:

      式中,$ {\mathbf{1}} $$N \times 1$维的全1向量;$\beta $$ {\mathbf{1}}./{\boldsymbol{X}} $导致的等效噪声幅度放大因子,定义为:

      式中,${P_{{{\boldsymbol{X}}^{ - 1}}}} = {{\left( {\displaystyle\sum\limits_{k = 0}^{N - 1} {{{\left| {{1 \mathord{\left/ {\vphantom {1 {X\left[ k \right]}}} \right. } {X\left[ k \right]}}} \right|}^2}} } \right)} \mathord{\left/ {\vphantom {{\left( {\displaystyle\sum\limits_{k = 0}^{N - 1} {{{\left| {{1 \mathord{\left/ {\vphantom {1 {X\left[ k \right]}}} \right. } {X\left[ k \right]}}} \right|}^2}} } \right)} N}} \right. } N}$。由于${P_{\boldsymbol{X}}} = 1$不满足${P_{{{\boldsymbol{X}}^{ - 1}}}} = 1$,故$\beta \ne 1$,则在基于频域元素级除法的距离处理中噪声项被放大。显然,由于$ {{\boldsymbol{r}}_{{\mathbf{1}},{\mathbf{1}}}} $为理想PACF,相关结果${{\boldsymbol{d}}_2}$的旁瓣仅受被$\beta $放大的噪声项影响。

      $N = 1\;024$$L = 100$时,如图1所示,可以发现当${\text{SNR}} = - 15{\text{ dB}}$且等效噪声幅度放大因子$\beta = $ $2.13{\text{ dB}}$时,基于频域元素级除法的相关结果旁瓣比基于PACF的高。而当${\text{SNR}} = 15{\text{ dB}}$$\beta = 2.21{\text{ dB}}$时,基于PACF的相关结果旁瓣高于基于频域元素级除法的相关旁瓣。这证明基于PACF的距离处理方式与基于频域元素级除法的距离处理方式的距离处理结果并不相同,而且其相关结果旁瓣的高低受SNR的影响。图1a和图1b中相关旁瓣高度对比情况相反,因此,使这两种距离处理方式相关结果旁瓣高度相同的临界SNR一定存在。

    • 由式(10)与式(13)可知,比较两种距离处理方式相关结果的旁瓣平均幅度,可得:

      式中,${A_s}$${{\boldsymbol{r}}_{{\boldsymbol{x}},{\boldsymbol{x}}}}$的旁瓣平均幅度;${A_0}$为AWGN平均幅度。可得${{\boldsymbol{r}}_{{\boldsymbol{x}},{\boldsymbol{x}}}}$的旁瓣平均功率为:

      式中,${N_0}$为噪声谱高度。设${\text{SNR}} = {{{P_{\boldsymbol{X}}}} \mathord{\left/ {\vphantom {{{P_{\boldsymbol{X}}}} {{N_0}}}} \right. } {{N_0}}} = {1 \mathord{\left/ {\vphantom {1 {{N_0}}}} \right. } {{N_0}}}$,则可得到临界SNR为:

      由上式可知,当时域信号${\boldsymbol{x}}$相应的品质因子MF与等效噪声幅度放大因子$\beta $确定时,即可确定此信号对应的临界SNR值${\text{SN}}{{\text{R}}_{\text{c}}}$。结合式(15)可知,当${\text{SNR}} > {\text{SN}}{{\text{R}}_{\text{c}}}$时,采用基于频域元素级除法方式的相关结果旁瓣较低;当${\text{SNR}} \leqslant {\text{SN}}{{\text{R}}_{\text{c}}}$时,采用基于PACF方式的相关结果旁瓣较低。综上所述,${\text{SN}}{{\text{R}}_{\text{c}}}$${{\boldsymbol{r}}_{{\boldsymbol{x}},{\boldsymbol{x}}}}$相应的MF和$\beta $直接相关,而这两者都由时域信号${\boldsymbol{x}}$确定。因此,不同时域信号的临界SNR不同。

      图2为OFDM RadCom信号PACF的品质因子MF与等效噪声幅度放大因子$\beta $的互补累计分布函数(complementary cumulative distribution function, CCDF)图。如图所示,OFDM的PACF品质因子MF和$\beta $都随子载波数$N$和符号调制阶数的变化而变化。在相同CCDF($ < 0.5$)和调制阶数的条件下,当$N$越大,其信号对应的MF与$\beta $都越小。当CCDF和$N$固定时,调制阶数越大,则OFDM RadCom信号的MF越小,$\beta $越大。此仿真结果展示了子载波数和符号调制阶数对OFDM信号PACF的MF与$\beta $的影响。由图2中的数据,根据式(17)可算出满足$N = 1\;024$和CCDF = 1%的OFDM RadCom两种距离处理方式的临界SNR,如表1所示。

      信号MFβSNRc
      OFDM 16-QAM2.431.53−32
      OFDM 64-QAM1.642.42−28
      OFDM 256-QAM1.483.15−25
    • 本文采用经典的基于连续波的OFDM雷达架构,经过较为简单的阵列信号处理之后可以得到三维雷达图像[1],从雷达图像中可判断目标的数量与各自的距离和相对速度信息。表2为基于24 GHz ISM频段的经典OFDM RadCom系统参数[1]。为满足一般IoV场景需求,设置CP持续时间为1.375 μs且子载波间隔为90.909 kHz,以满足200 km/h的最大探测速度和200 m的最大作用距离。令子载波数为1024,估计符号数为256,以满足1.61 m的距离分辨率和1.97 m/s的速度分辨率。雷达图像中的SNR观测一般需要将雷达处理增益${G_{\text{p}}} = N{N_{\text{f}}}$纳入考虑,雷达图像SNR为${\text{SN}}{{\text{R}}_{{\text{image}}}} = {\text{SNR}} \times {G_{\text{p}}}$。根据表2参数,有${G_{\text{p}}} \approx 54{\text{ dB}}$

      符号参数数值
      fc载波频率/GHz24
      N子载波数1024
      Δf子载波间隔/kHz90.909
      T基础OFDM符号周期/μs11
      Tcp循环前缀持续时间/μs1.375
      TsymOFDM符号周期/μs12.375
      B带宽/MHz93.1
      ΔR距离分辨率/m1.61
      Rmax最大作用距离/m206
      Nf估计符号数256
      Δv速度分辨率/m·s−11.97
      vmax最大探测速度/m·s−1± 252.3

      假设环境存在4个动目标,且其与RadCom平台间的距离和相对速度各不相同:目标1,距离40 m,相对速度10 m/s;目标2,距离35 m,相对速度10 m/s;目标3,距离35 m,相对速度16 m/s;目标4,距离30 m,相对速度16 m/s。图3显示了在使用表2系统参数,忽略信号传播能量衰减,${\text{SN}}{{\text{R}}_{{\text{image}}}} = 24{\text{ dB}}$(即${\text{SNR}} = - 30{\text{ dB}}$)和64-QAM调制条件下,OFDM RadCom系统采用二维16倍Hamming窗观测的多目标探测雷达图像。虽然4个目标的距离和相对速度都比较接近,且噪声较大,但根据图3a所示,基于PACF的距离处理得到的雷达图像可以较清晰地识别出4个分开的目标峰值,无明显次峰,且其各自的距离与相对速度也较为准确。而由图3b可知,基于频域元素级除法的雷达图像较高次峰比基于PACF的雷达图像多,导致雷达检测性能降低。因此,当${\text{SNR}} = - 30{\text{ dB}}$时,基于PACF的距离处理所得雷达图像由于其次峰较低,基于PACF的距离处理方式更有利于雷达的目标检测处理。这证明了表1所得临界SNR的有效性。

      为了更直观地验证表1中临界SNR的有效性,本文评估了满足恒虚警率(constant false-alarm rate, CFAR)条件的雷达检测性能。在雷达领域,奈曼−皮尔逊准则被广泛用于雷达信号检测,此准则要求在给定SNR条件下,满足一定虚警概率时的检测概率最大。设虚警概率与检测概率分别为${P_{{\text{fa}}}}$${P_{\text{d}}}$

      图4为在$N = 1\;024$${P_{{\text{fa}}}} = {10^{ - 5}}$,忽略信号传播能量衰减,同时满足奈曼−皮尔逊准则条件下,基于PACF和基于频域元素级除法这两种距离处理方式对单一目标的雷达检测概率图。当基于PACF方式的${P_{\text{d}}}$达到100%且基于频域元素级除法方式的${P_{\text{d}}}$达到99.99%时,将所得SNR定义为其信号的临界SNR。

      图4a所示,当采用4-QAM调制时,两方式的曲线完全重合,这证明当频域符号恒模时,两方式的距离处理相关结果完全一致,检测性能也完全一致。根据图4b~4d可得OFDM RadCom信号在不同调制阶数时的临界SNR:16-QAM,临界${\text{SN}}{{\text{R}}_{{\text{image}}}} = 23{\text{ dB}}$,则${\text{SN}}{{\text{R}}_{\text{c}}} = - 31{\text{ dB}}$;64-QAM,临界${\text{SN}}{{\text{R}}_{{\text{image}}}} = 24{\text{ dB}}$,则${\text{SN}}{{\text{R}}_{\text{c}}} = - 30{\text{ dB}}$;256-QAM,临界${\text{SN}}{{\text{R}}_{{\text{image}}}} = 25{\text{ dB}}$,则${\text{SN}}{{\text{R}}_{\text{c}}} = - 29{\text{ dB}}$。此3组临界SNR与表1中的临界SNR有一定误差,在调制阶数分别为16、64、256时,临界SNR差距分别为1、2、4 dB。误差来源于对信号的MF与$\;\beta $的CCDF结果的取值,图2中不同CCDF对应的MF与$\;\beta $取值不同,则算出的${\text{SN}}{{\text{R}}_{\text{c}}}$不同。CCDF取值越小,对应的MF与$\;\beta $取值越大,则对应的${\text{SN}}{{\text{R}}_{\text{c}}}$越大。因此,每种信号的临界SNR的确定还与其信号的MF与$\;\beta $的CCDF结果的取值有关。虽然三组临界SNR与表1中数据具有一定误差,但差距较小,这证明了本文所提的基于PACF和基于频域元素级除法这两种距离处理方式的临界SNR计算方法对连续波OFDM RadCom系统的有效性。

    • 本文首先介绍了两种用于连续波和波形共用体制的RadCom距离处理方式,分别是基于PACF的距离处理方式和基于频域元素级除法的距离处理方式。基于频域元素级除法的距离处理方式实际上等同于两个全1向量的PACF。然后,本文分析了这两种距离处理方式的相关结果中旁瓣高度的影响因素,发现基于PACF的旁瓣高度取决于MF,而基于频域元素级除法方式的旁瓣高度取决于以等效噪声幅度放大因子$\beta $。随后,本文以相关旁瓣高度为基准提出了基于MF和$\beta $的两种距离处理方式临界SNR的计算方法。对频域非恒模信号:当SNR$ {\text{ > SN}}{{\text{R}}_{\text{c}}} $时,采用基于频域元素级除法方式的相关旁瓣较低,雷达性能较好;当SNR$ \leqslant {\text{SN}}{{\text{R}}_{\text{c}}} $时,采用基于PACF方式的旁瓣较低,雷达性能较好。最后,基于面向IoV场景的RadCom系统参数,本文通过仿真多目标雷达图像和基于CFAR的检测概率验证了提出的临界SNR的有效性。

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return