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Design and Evaluation of GPS Code Pseudorage
Smoothing Algorithm Based on Carrier Observables

Deng Qiang Huang Shunji
( Dept. of Electronic Engineering, UEST of China Chengdu 610054)

Abstract The goal in designing a GPS code pseudorange smoothing algorithm is to smooth the
random noise of the code pseudorange by means of the carrier observables and to improve the position—
ing accuracy when the requirement for real4ime kinematic point determination is satisfied. The perfor—
mance of smoothing algorithm is dominated by three factors of the receiver performance, the choice of

weight factor, and the recursive time. Theoretic discussion of evaluation of the smoothing algorithm is

made in this paper- And a smoothing algorithm with optimal weight factor is given here. which has the

fastest noise reduction performance.
Key words smoothing algorithm; code pseudorange  carrier phase observable  error estima—

tion; performance evaluation

The basic positioning models for GPS users are code pseudorange and carrier phase pseudor—
ange positioning, the detailly mathemaic models of which are given by B. Hofmann-W ellenhof et.
al''. The advantage of using GPS carrier phase measurements is that they are precise to a few
millimeters. The code pseudorange smoothing technique by GPS carrier phase observables over—
comes the shorts of the bad accuracy of code pseudorange positioning and the time consum ption of

carrier phase positioning. The first extensive investigation of this subject was provided by
[2]
Hatch ™.

1 The Smoothing Algorithm Description'"”’
For an epoch t, the smoothed code pseudorange is given by
L(te)= wi(tx)+ (1= w)l(#) (1)
where wis a weight factor; /(#) is the iononspherefree combination of the dualHfrequency P-

code pseudoranges Pi(tx) and P2 (), writing as
f%PLl(l‘k) - f%PLZ([k)
(&) = 2
) fi- 1 (2)
The extrapolated value /e (#) as the forward estimation for code pseudorangeis given by
le(a) = L(s- 1)+ W(x) (3)

where L (#-1) is the last code pseudorange smoothing value; and W (# ) is the correction term

consisting of carrier phase observables. By introducing the wide signal

H(#) = Hu(r) - Hoa(r) (cycles) (4)
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we have the common-error+ree correction term
W)= AH(u) - AH(a-1) (meters) (5)
where A is the wavelength of the wide lane signal.
A recursive algorithm of smoothing techniqueis obtained from Eq. (1)~ (5) under the initial
condition [ (t0)= le(t0)= Is(t0).

2 The Error Estimation of Observables” "

The P—code pseudorange measuring error is composed of systematic group delay bias and ran—

dom noise. The system biases on Lt and L2 channels are given by

Algi= Wa+ Witk Wer Wt W, (6)

Alp= Wi+ Wit Wer Wy W, (7)
where Wii and W2 are the ionospheric delay ranges on carrier frequencies L1 and L, respectively;
W:is the tropospheric delay range which holds the same value for L1 and L2 channels; W is the cor-
responding range of the difference of the satellite clock and receiver clock; W and Wez are the e-
quipment group delay ranges which have a little bias between L1 and L2 frequencies and can be re-
moved by introducing a numeric model; Wep is the epheride error.

According to Eq. (2), the ionosphere-free combined code pseudorange error2/ (4 ) has a mean
value for arbitrary epoch

= W+ W W W, (8)
with assumption that Wo= Wei= Wiz, The approximate value for_1is 5. 6 m. The noise of /(&) is
increased by the factor of 3, thus the variance of A/(#) is obtained from

&= 3¢ (9)
where % is the variance of random noise for Pvode pseudorange which has an approximate value
of 1m. So § holds the value of 3 m.

Because the correction term of Eq. (5) derived from the wide lane signal is the differential
range of the changed distances measured on L1 and L2 channels, the AW (#) behavouring as a nor-
mal distributional variable with the mean and variance are

= 0 (10)
&= 1.7% (11)

where % is the variance of the carrier phase measurement, and holds about 2 millimeters. So the

correction term has an approximately noise level of 5 millimeters.

3 Performance Evaluation

Denoting the mean value and variance of the code pseudorange smoothing value error/ (# )
as (k) and €(k) respectively, and assuming the independence is between the observables, the
resursive of _ (k) and §(k) are give by

()= woa+ (1= w) (k= 1) (12)
Cky= WG+ (1- w)€Uk- D+ (1- w)’8 (13)
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With the initial condition _ (0)= _1 and ¢(0)= %, we have the closed equation for_ (k) and €
(k) as follows
_(k)= _1 (14)

k-1

hy= 20 wil- w)’ s (1= w) E?+Z (1- w) (15)

j=0
with the assumption that the weight factor w holds as a constant. Accordlng to Eq. (15), and be-

cause 0<w <1, we have

€)= oG+ J—LI_I("I_WW)Z% (16)

From above, a conclusion is derived that the smoothing technique can reduce the random code
pseudorange measuring noise, but has no ability to eliminate the systematic bias given in Eq. (8).
The first part of the right-hand side of the Eq (16) decreases with the reduced w,while the
second part increases with the reduced. Because &< €, it is reasonable to reduce w greatly. Fig. 1

gives the illustrations of the noise levels with incorporating different weight factor into the algo-

rithm given in the first section of this paper.
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with the optimal weight factor

4 Choice of the Weight Factor

The criterion of the optimal weight factor choice is that the algorithm has the fastest noise
reduction performance. According to Eq. (13), we have

k)= w8+ (1- wk) k- D+ (1- wk))'S (17)
E)eZ
Let WE%) 0, the optimal weight factor wop is derived as follows
k- 1)+ ©
vat(k)z e%_'_ ez(k_ 1)+ e; (18)

Fig. 2gives the illustration of the noise level with the optimal weight factor. Table 1 gives the
relationship between the smoothing and the resursive time when optimal weight factor is avail-

able.

Table I Performance of the smoothing algorithm with the optimal weight factor

k 0 5 10 20 30 50 100 1 000

€/m 3.0 1. 22 0.90 0. 65 0. 54 Q0 42 0. 30 0. 13
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S5 Conclusions

The smoothing technique is an effective method to smooth the measuring noise embeded in
code pseudorange. The theoretical discussions and tests illustrate that the smoothing accuracy de—
pends on the choice of weight factor, the recerver noise, and the recuresive time. As a result, when
recursive time is larger than 100, a smoothing accuracy of 30 cm is derived with the optimal
weight factor incorporated into the smoothing algorithm and with the conditions given in the sec—

ond section of this paper.
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