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A Fast BP Learning Algorithm via A Hybrid Approach®
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Abstract A hybrid approach based on changing the activation function and using a robust error esti-
mator for improving the learning speed of BP network is suggested in this paper. The activation function
used in this paper is a non-differentiable piecewise linear function and its derivative function is re-defined
as a new continuous one. The network learning is proceeding under new error function. Significant im-
provement is observed in the simulations of the XOR and encoder/ decode examples.
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Based on a continuous and differentiabe activation function and an LMS error estimator, a standard
BP algorithm is used to reduce the learning speed. To enhance its leaming speed, a series of modifica-
tions have been made: in Ref.[ 1] s an adaptive learning rate is used;in Ref.[ 2], a nondifferentiable ac-
tivation function is suggested; in Ref.[ 3], a new error estimator is proposed; in Ref.[4] and Ref.[ 5],
robust error estimators are used. To improve the progress made in these literatures furtherly, we sug-
gest a hybrid approach in this paper.

1 Cauchy Estimator

It is well-know n that the main performance of a robust error estimator is the ability of suppressing
the gross errors such as outliers in the learning process. The Cauchy estimator, one of the robust error
estimators, is described by an error function

P(r) = Tlog (14 ) S8

where r;=1;—y; is the residual of pattern i with target

ti.Hence the influence function of the estimator is given

by [4]

ap(i’,’ ) Vi
i) = Iri 14}
which is plotted as curve @D in Fig. 1, in which the influ-
ence function of an LMS estimator is also plotted as
curve @.
It is obvious from Fig.1 that the LMS estimator is
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exlremely sensitive to gross errors since its influence
function increases proportionally with the residual, and .
therefore even a single large residual from an outlier

would outw eight the remaining small residuals thus pre- Fig. 1 The influence function

vent the algorithm from converging to its target func-

tion. On the other hand, the impact of gross errors including outliers on the Cauchy estimator will be

limited since even for very large residuals, the outliers have no effects at all due to
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The introduce of Cauchy error estimator is proved to be helpful for improving the convergence
performance of our modified BP algorithm.

2 Alternatively Employing Different Activation Functions

The introducing of non-differentiable activation functions into the BP algorithm has been proved
to be very efficient in enhancing its leamning speed. However, in serveral benchmark-liked problems,
such as XOR, encoder/decoder problem, oscilliations are occurred in most of the iteration process ? . In
our algorithm design, continuous differentiable activation function and non-differentiable activation fun-
cation are alternatively employed for hidden layer and output layer to overcome the oscillation pheome-
na.

3 The Modified BP Algorithm Design

A p-g—n neuron three layered (L4, Lg, Lc) MLP is used to implement our algorithm. The vector
pattern for the three layers is denoted as 4, B, C respectively, where A={ai, az - a,}» B={b1,
b2, -+, bg}» C={c1,s c25 5 cn}.The connection weights between L4 — Lz, Ls— Lc are denoted as
Wins Whpj respectively, where i=1, 2, == p; h=1,2, =, q;j= 1.2, -, n.

The activation function of neruon j in the output layer Lc is assumed to be a non-differentiable

function
1 x> %
_ 1 _ 1 1
filx)= x+2 2<x<2 4)
0 1 x<—%
then the input fed into neuron j of hidden layer L p will be
netc; =— 2 Whjbk 5
h=1
and its output is given as
¢ = fi(netc) (6)
For hidden layer L p, the activation function is chosen as a continuous differentiable sigmoid func-
tion
_ 1
SrCx) = 1+ exp(— x) 7
The input fed into neuron % in layer Lp is given as
netb, = i: Winai (8)
i=1
thus its output can be expressed as
by = fu(netby) )

Since the piecewise linear function given by Eq. (4) is not differentiable, its derivative can be de-
fined as

fito=1—x" r€0D (10)

Thus by the use of Eqs. (2).(5) and (9), we obtain the general error of neuron i in the output
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layer
aE,' (’]p (I"i ) al"j 14 2
= — — —
4 dnetc;) Iri  Inete)) 1+ 3 1= ) an
where E; is the cost function.
Analogously, the general error of neuron % in Lp is
IE
en = Q(Tt}z)h):bh(l_bh)ZdjWhj 12)
-1
By applying delta rule to adjust the connection weights and threshold values, we have
AWn(n) = oaiey(n)+BAWy (n— 1) (13)
AW},_/(YI): le;dj(n)+BAWh;(n—l) (14)
AY(n) = Ndj(n)+ BAY(n— D (15)
AG(n)= aen(n)+ BAO(R— 1 (16)
respectively, where parameters o, M, B€ (0, 1), B is the momemtum.
Based upon the above equations, the modified BP algorithm can be described as below :
1) Initialize { Win}s { Waj}s { Op}s and { ¥;} by radomly assigned values between £1.0.
2) Randomly select an 1/0 pattern (4%, C*) for the MLP network.
3) Compute the input and output of neuron % in the hidden layer by Eq. (8) and
bh:fh(i Wiai+ 0,) an
=1

where f1(°) is given by Eq. (7).

4) Compute the input and output of neuron j in the 10
output layer by Eq. (5) and

Cj — f/(th: Wh_;bh‘i_yj') (18)

where f;(°) is given by Eq. (4). =
5) Adjust { Win}, { Waj} {Oh} and { ¥} by the use

of Eq. (13) ~Eq. (16).
6) Repeat 1) ~5) until the error between { C;} and

its target pattern being sufficiently small. 10750 100 200 300 300
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Fig.2 The iteration process of solving

In this paper, we demonstrated the performance of the XOR Problem

the hybrid approach by applying the algorithm to both

the XO R and the encoder/ decoder problems with a three-layered M LP network. The first experiment
is to solve the XOR problems. To do this the algorithm dipicted above is used to train a 2-2-1 MLP

network . The numerical simulation results are given in Fig. 2, in which curve @ corresponds to =0,

and curve @ corresponds to 3=0.8. Both curves use the parameter values o= 1=0.4, A=0.01.No

oscillation phenomenon is observed in the iteration process. The 1/0 pattern after the training can be

seen in Tab. 1.

The encoder/ decoder problem is a more difficult problem than the XOR. The convergence results
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are given in Tab.2,in which the training parameter values a=1=0.4, A=0.01 and =0. 8. The
convergence criterion E=10 . Obviously the results in Tab.1 and Tab.2 show that the hybrid ap-
proach is better than the conventional BP algorithm.

Tab.1 VO pattem of the trained MLP Tab.2 Simulations on encoder’ decoder problems
I Output Average Iterations
nput B=0.8 B=o0 Size Trals
LMS hy brid

0 0 0.002 741 0.002 999

11 0.001 391 0.001 299 424 20 5792 56

0 1 0.997 794 0.007 484 63-6 20 7219 113

1 0 0.997 920 0.008 385

5 Conclusion

The algorithm based on a hybrid approach has been proved via two examples to be efficient in en-
hancing the leaming speed of a BP network and other of its performances will be furtherly studied.
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