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On Negative Solution of Invariant Subspace Problem
Liu Mingxue
(D epartment of M athematics, Fujian Nommal University Fuzhou 3350007)

Abstract In this papen the negative solution of the invariant subspace problem is simplified, and a
bounded linear operator on /; without non-trivial closed invarant subspaces is presented. In patticular the esti-
mations of norms of some vectors are replaced by the calculation of coordinates of the vectors in this paper and
the simple algbraice operations are employed instead of the technique of compact spaces.
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Recently, P. Enflo and C. J. Read presented the counterexample for the problem of invariant sub-
spaces on nonreflexive Banach spaces respectively! " 3 . B. Beauzamy, C.J. Read and A .M. Davie simpli-
fied the result of Enflo and Read respectively’® “ . In this paper, we furtherly simplify the result by means

of algebraic techniques.

1 The Operator T on /; with Required properties

Let N denote the set of all positive integers and Z " denote all nonnegative integers. Let d =
{dn}n—0 denote a strictly increasing sequence of positive integers, which is required to increase suffi cient-
ly rapidly in Ref.[ 6] s and do= 1.We shall write a,=d2n—1» by=d 2, for all n in N.So < ar< b<<
ar< by < a,; by ---.We shall also define vo=0, v,2= (n—1)(a,+b,) for each n in N.

Let llx Il denote the ordinary norm of the vector x in the space /;. Let { fu} n—0 denote the unit vec-
tor basis of 71, where fo= (1,0, 0, ==, 0y ---), /1=, 1,0 -4 0, ---) ---.Let E, denote the subspace of I
spanned by the set {f;;0<<i<n}.Let E denote the dense subspace of /i spaned by the set {3 i€z},

Lemma 1 Let d={d,},—ois a strictly increasing sequence of positive integers, provided d in-
creases sufficiently rapidly (abbreviation p.d. ), then there is a unique sequence {ei}i=0in E such that
{ei; i6Z+} is a linearly independent set in £ and satisfies the follwing conditions :

1) fo=eo;

2) If integers n, r, i satisfy n=2, I<<r<<n—1, and ran<<i<<ran+va—r—1, then fi= an—r(ei—
e—a).

3) If integers n, r, i satisfy n=2, 1<{r<<n — 1, and (r— 1) an + va—r< i< ran, then fi=
2[(r*1/2)an*ij/ Ja_”ei.

4) If integers n, r, i satisfy n=2, 1<\r<<n—1, and r Can+ b )<i<< (n— 1) ant rbn, then fi=ei
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—buei—» .

5) If integers n, r, i satisfy n=2, 1<<r<<n— 1, and (n— Dan+ G— 1) ba<i<_r(ant bn), then
fi: 2[ r— 1/2)bn* il/ JFne,-.

6) span {ei; 0<<i<<n}=Enx for all n in z.

7) span{ei; i ©Z ‘ y=E=span{fi; i€Z ‘ ).

8) If integers n, r, i satisfy n=2, I<<r<<n—1, and ran<<i<<ran+va—r—1, then llei—ei—ra |
<2 ap,.

9) If integers n, r, i satisfy n=2, 1<<r<<n—1, and r (a, +b,)<<i<<(n—Da, t b, then ll¢
—ein <ony '.

The verification of Lemma 1 is essentially the same as the argument of (5.0.1) in Ref.[ 6] , note 2.
2 in Ref.[ 4] and formulas (1), (2) in Ref.[ 5], and is therefore omitted.

Definition 1 Let 7: E —FE be the linear operator such that 7(e; )= e+, i€z’

Theorem 1 Provided d increases sufficiently rapidly , 7 is a bounded linear operator on ¢ E ,
Il 1) and Il T II<22.

The proof of Theorem 1 proceeds in the same way as that of Lemma 4.1 in Ref.[ 4] or Lemma 2 in
Ref.[ 5], and is therefore omitted.

Note 1 For the sake of convenience, we shall just write T in Theorem 1 for its extension to all of

li.

2 An Auxiliary Operator and An Auxiliary Norm

Definition 2 Let On (m>2)) be the linear operator from E into £ m—1a such that

_fi 0<l< (m_l)am
Onfi =< — ame i=m—mdan+tjn> m 0<j < vmi
0.0 othe w ise

We observe that if i= (n—m )an—+j, > m, and O<j<<vm—1, then i =(n—m)ar> an> (m—
Dam.p.d.Consequently, Definition 2 is well defined.

Lemma2 On (m>>2) is a bounded linear operator from (E, Il < [1) into (Em—1a =1,
and
there is a constant Cn depending only on the numbers @ 1, b1, +++, am—1, bn—1, amsuchthat || Qux Il << Cn |l
x Il forall x in E.p.d.

Proof Using Lemma 1 and the algebraic operation of vectors, we can prove Lemma 2.

Note 2 We may assume without loss of generality that Om is a bounded linear operator from /1 into
(Em—va, =11 and 11 Qn I<<Cn.p.d.

Lemma 3 If m>2, and an T bw<<s<<(m—1)an T bu,then T*(I— Qn) is a bounded linear
operator on [ and |l T°(I—Q,) II<<2, p.d.where I denote the identity operator.

The proof of Lemma 3 proceeds in the same way as that of Lemma 4.1 in Ref.[ 4] or Corollaty of
Lemma 3 in Ref.[ 5], and is therefore omitted.

Definition 3 If y=yoeotyiert -ty n€ Z", and y70, then we write val(y )=min{i; y;
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70y .
Lemma 4 Let k=3 be an integer. If x € /1and x70, then there exist mo roin N such that mo=
rotk., Qm0x¢0, and val (O x )groamo.

Proof Suppose the conclusion is not true .Then for any m, r € N with m=r-+k, we have
Owx =0 or val(Qux)> ram (D

Write x= Z:Oxif,-.Then from 6),we can set for any m>2

(m l)a Cmr 1>a

Z )Ctﬁ z Ymiei (2)

i=0
If r€N, m=r+4 and ram =+ vm—r— 5 i< ram+ vm— 1, we are inside the range of application of
fomula 2) for fi.So we get
Ymi = Xilm—r 3)
If m>2 and vm—1<i<_ (m —1)am,we are in the range of application of fomulas 2) and 3) for fi,
and fi has no term eiwith vm—2< i< vm—1. Therefore we can write

g g ym,e, fw,, 4)

i=v
m*Z

By Note 2, On is a continuous linear operator from liinto CEmn—1a » Il > I).Thus by the definition

of On (m>>2), we can also write Qm > xifi)= Slzmiei, where

(*l)v

Zmi — dm : : X(rm)a+t (5)

n= mt1

(m— I)a

Thus by Eq. (2) and Definition 2 we have Omx= 2 ymiei+ 2 E zmiei for each m=> 2.Therefore it fol-

lows from Eq. (1) that if r €N, m=r+k—+1 and vm— = i< (r+ 1) am, then
ymi =0 6)
and if €N, m=r+k+1 and 0<Xi<<vy—1» then y i +zm= 0.In particuan if m =k +2, 0<Li<<
vm—1, then
ymi+ zmi = 0 D)
KreN, m=r+k+1and ram+vu—r— 2 i<<ram +vm—r—1» then, noting that vy,— << ra, +
vm—r—2y p.d.ram+vm—r—1<(r+1)am, p.d.and using Eq. (4) and Eq. (6), we get
xi= (1/am)ymi = 0 )
For any n, m in N with n=>m, set Y= n—m.Hence if m=k+2 and v,,— i< vy—1, then n=
r+k+1 and rantva—r—2Z (n—m ant i<<ran+va—r—1, p. d. Therefore it follows from Eq. (5) and
Eq. (8) that z,;= 0.Thus by Eq. (7) we get y»;/=0 whenever m—=k—+2 and v,,— < i< vjy—1.Hence it
follows from Eq. (4) that if m=k=+2 and vm— 2> i< vm—1, then xi=0.Consequently, if n==k +1, vn—1
< <<vn, then
xi =0 CD)
Hence, noting that (m—1)am<vm, p.d., we have xi=0whenever m=k+1 and vm— 1< i<<(m—1)
am. Therefore it follows from 1) ~5) and Eq. 2) that ymi=0 whenever m=k—+1 and vm—r i<< (m —
1Day . Consequently, using Eq. (2) for m=k—+ 1,we have
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Ew’izgymzei (10)
i—0 i=0

If m=k and O<{i<<vm—1, then it is easy to show that for any n=m,vai— 1< (n —m) an+ i< vn,
p.d. and n=k-+1.Thus by Eq. (5), Eq. (7) and Eq. (9) we can obtain ymi=0 whenever m=k—=+2, 0

< i< vm—1.Hence, using Eq. (10) for m =k +2, we get g}xﬂ:O.Letting m—>°3 we obtain x =

Zoxﬁ: 0, which contradicts x7-0.

Definition 4 For any x €E., if x=xoeo+x1e1+ -+ xoen, 1 €Z ", then we define 1 x la=|x0
|+l x1l + -+l xal .1t is easy 1o show that Il * Ilais a norm on E.
Lemma 5 On (m>2) is a bounded linear operator from /1into (Em—1a , Il * lla), and there is

a constant D,, depending only on the numbers a1, b1s -+ dm—1s bu—1» am such that 1| Qux Il /<<D,, Il x
Il for all x€ I1.p.d.

Proof  Since E(m—1)q  is a finite dimensional space, the norms Il and Il =1, on E(n—na, are

equivalent .Thus by Lemma 2 and Note 2 we obtain Lemma 5.

3 Showing That 7T Has No Non-trivial Closed Invariant Subspaces

Let d°(g) denote the degree of the polynomial g.For any nonzero polynominal g (£)=aot ait+
tan", n €Z7 ,we wiite val (g)=min{i; @70} .For any vector y=yoeo+yieit -+ ynent -+ in
I1,we write Pn(y )=yoeotyiei+ -+ yuen, n€Z " .

Theorem 2 Provided d increases sufficiently rapidly, the bounded linear operator 7 on /1 has no
non-trivial closed invariant subspace .

Proof Tt is sufficient to show that for any x €/1(x70) and any €0, there exists a polynomial ¢
such that Ilg(T)x—eo [I<e.

First we construct the polynomial g.Since an—>— 2, there is a k in N such that k=3 and
5/ ar—1< ¢ an
By Lemma 4, there exist m,r in N such that m=r=+k, Qnx70 and val (Qnx)<<ra,. Write val(Qx )
=, then j<<ra, .By Note 2, we have Qux €E (u— a - Consequently, we can write
Onx = yjg T yit1gi1t =+ yn—na €ma 12
where 370.Set h1(T)=(1/y;) 77" 9,77 Then hi(T)Qmx €E and (r+1)am—j= am.Noting that
m=r+k, k=3,we have (r+1)an—j<<(m— 1) am .Consider two cases separately:
Case 1 If A1 (T)Qmx is in the form of
hi(T) Qux = €riia + y<11>e(m*1)am+l+y§1)e(m* 1>am+2+
then we set i (T)= h1(T).Consequently /i (T)Qmx is in the form of & (T) Onx= e+ va + 2z, where z
€E,and val > (m—Dam, val (W)= G+ Damn—j=am, d* (W <(m—1an.
Case 2 If hi(T)Qmx is in the form of
hi(T)Qmx = e<r+1>am+y(ill)e<r+1)am+il+ et yg};fﬂmme(mﬂ)am + .-
where y,ﬂ”;éo, i1€N,and (r+1)an+i1<<(m —1) am. Then we set h2(T)=h1(T)— (yz('ll)/yj)
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7t e, i Consequently val (7)== ams d© (h)<(m—1ay,.

I h2(T) QOnx is a vector of the form A2 (T) Omx= e l)am+yl(2)€(m*l)am1 1+y2(2)e<m71>am< 21+
-+, then we take h (T)=h,(T).Therefore h (T )Qux is a vector of the fom h (T) Qux=e ¢+ pam+ z.
where z € E,val(z)> (m— D an,val(h)=am, and d°(h)<<(m— Dan.

If h2(T) Qnx is a vector of the form h2(T) Onx= e(r+1>am—|_yt(§)e(r+1>am+i2+ -~-—|—y5%1)71>am
em—a 1 -5 where y(if)io, i2> i1, (r+1)am =+ i2<<(m— 1) am, then, continuing in this way (not

more than

(m—1) am— jtime ), we can obtaina polynomial # suchthat 2 (T) Qnx = e+ na + z, wherez € E,

val @)= (m— D am, val (h)=am and d°Ch)<(m—1)an.
From the above, it can readily be seen that there is a polynomial /4 such that

Pn—va (h(T)QOnx) = eGrtva (13)
and /1 (T) is in the form of
h(T)= X T+ 1T % oot XKoo T % (14)
Set ¢ (T)=C1/bm) T"uh (T).Then
g(T) = (U bn)(ha T ek Ao 1T % P oot N va 5, TV o) (15)

We mow prove || g(T)x—eo II<e.lt follows from the construction of 4 (T ) that the coefficient A
of h(T) in Eq. (14) depends only on the coordinate yi of Omx in Eq. (12). Moreover the coordinate yi
of Onx depends only on a,.Therefore the coefficient A; of 2 (T) depends only on a,.Write

Cu=Ix HlIx o bt rona | (16)

Then C'y is a constant depending only on @u.Note that | TOux Il 4= Il Oux Il,. We obtain by Lemma
5 that

(m—Da (m—1a

WA (T O e > I8 T IT 0 la= >3 x| 1Qux 1a<< ClDw llx Il (17)
By Lemma 3 and Eq. (15), Eq. (16), we can obtain
lg(Dx— g(T)Omx | <2l x 1C'w(1/bu)< 1V am.p.d. (18)

By Eq.(12) and Eq. (15), we have q(T)Qmx € E2(m—1a +5 .Therefore we may write ¢ (T) Onx
=yoeotyiert =t yam—va +bexm—na +b . Noticing that 2 (m — 1) am + bn<<2(am+ bm ), p. d.
and [ (1/2)bn—2(m— Dam]/ [bm=1,p.d.we can obtain by Eq. (14), Eq. (15) and Eq. (17) that

Il g (T)Qmx — Porva+b (g (T)Omx I <1/ am.p.d (19)

If am<j<<(m—1)am, then it follows from 4) that

||(1/bm>ej+bm_ej | = 1/ bm 0)
On the other hand, by Eq. (12) and Eq. (14), We have val (1 (T)QOnx)=am . Hence we may write
h (T)inX:yamea’n+yam+leam+l+ ---. Therefore it follows from Eq. (13), Eq. (15), Eq. (17) and Eq.
(20) that
WP a6 (q(T)QOnx)— ewtva 1< 1/ am.p.d. ©3D)

Since m=r+k, k=3, it follows that »r +1=<<m — 1. Using 8) with n replaced by m, r by r=+1,
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and i by (r+1)au,we obtain
ecrtna — eo Il << 2/ am—r1 (22)

By Eq.(18) ~Eq. (22) and Eq. (11), we can obtain |l ¢ (T)x— eo lI< €.Thus the proof of

Theroem 2 is completed.
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