同态滤波在扭矩载荷识别中的应用*

陈 羽中**

四川工业学院汽车工程系 成都 611744)

【摘要】 通过理论分析和实验验证,证明了采用同态滤波的方法识别机器扭矩载荷的可行性。 同时提出了根据时序模型的 Green 函数来判定窗函数宽度的方法,减少了选取窗函数宽度的盲目性。作 为应用实例,给出了采煤机扭矩的识别结果。

关键词信号处理:载荷识别:同态滤波:时间序列中图分类号 TN911.72

扭矩载荷谱对机器的设计和使用都很重要。直接测量是获得扭矩载荷谱的基本方法。但有时直接测量非常困难,甚至难以实现。而间接测量法由于机器系统特性的影响,多用于静态扭矩的测量。本文采用同态滤波的方法对间接测量的扭矩信号进行处理,消除系统特性的影响,从而得到动态扭矩信号。

1 同态滤波[1]

根据系统分析理论有

$$p(n) = h(n) * T(n) \tag{1}$$

式中 p(n)为系统输出响应; h(n)为系统的单位脉冲响应,反映了系统的特性: T(n)为系统的输入,此处为输入转矩。

式(1)表明 h(n)与 T(n)是卷积性的。处理卷积性组合的信号,必须采用非线性滤波。同态滤波是一种非线性滤波。其特点是:首先由具有某种变换特性的特征系统,把按某种运算规则(相乘或卷积)混杂在一起的信号变换成叠加性的信号,然后再用线性滤波方法处理,最后再运用特征系统的逆系统进行变换,把原始信号恢复出来。

2 解卷积同态系统

解卷积同态滤波系统的规范形式如图 1 所示。它包含了特征系统 D_{\bullet} ,线性系统 L,逆特征系统 D_{\bullet}^{-1} 。特征系统具有如下特性

$$D_{\bullet}[x_1(n) * x_2(n)] = D_{\bullet}[x_1(n)] + D_{\bullet}[x_2(n)] = \hat{x}_1(n) + \hat{x}_2(n)$$
 (2)

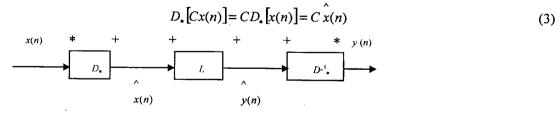


图 1 同态滤波的规范形式

2.1 特征系统 D.

系统的输入 x(n)是离散卷积序列

¹⁹⁹⁹年1月26日收稿,1999年3月8日修改定稿

^{*} 煤炭部煤炭科学基金资助项目和四川省教委重点科研项目

^{**} 男 41岁 博士 副教授

$$x(n) = x_1(n) * x_2(n) = \sum_{k=-\infty}^{\infty} x_1(k) x_2(n-k)$$
 (4)

显然, 当满足特征系统 D, 的特性条件式(2)时, 特征系统的数学表示应是 Z 变换, 即

$$X(Z) = X_1(Z)X_2(Z) \tag{5}$$

这是因为 Z 变换运算 Z[x(n)]可以看成是以卷积输入运算和以相乘输出运算的同态变换。采用了 Z 变换后,卷积性组合变成了乘积性组合,这样便可用一个相乘同态系统来处理。由于 X(Z)通常是复数,故此处必须采用复对数,其计算过程为

$$X(Z) = \ln[X(Z)] = \ln[X_1(Z) + \ln[X_2(Z)]$$
(6)

进一步作逆 Z 变换计算,特征系统 D 给出

$$x(n) = x_1(n) + x_2(n) \tag{7}$$

式中 $x_1(n)$ 和 $x_2(n)$ 分别是 $\ln[X_1(Z)]$ 和 $\ln[X_2(Z)]$ 的逆 Z 变换。可以看出,特征系统 D 的作用在于 同态系统的输入端实现时域上的由卷积至相加运算的同态变换,以便和下面的线性系统匹配。 $\hat{x}(n)$ 称为实信号 x (n) 的复时谱。从工程的观点, $\hat{x}(n)$ 应是实序列,它和x(n) 应是唯一对应的。既然 $\hat{x}(n)$ 是对 x(n) 顺次作三次变换(Z 变换、复对数和逆 Z 变换)后回到时域的映射,那么必须避免在取复对数时可能出现的模糊性。

2.2 线性系统 L

线性系统 L 是完成复时谱 x(n) 在时域上的加权。如果令 l(n)表示其加权函数,那么,线性系统的输出序列 y(n) 应是

$$y(n) = l(n)x(n) \tag{8}$$

通常 x(n) 、 x(n) 、 y(n) 、 y(n) 都是实的稳定序列,因此 l(n)也是实序列,一般也是稳定的。这意味着 L(Z)的收敛域包括单位圆, $L(e^{j\alpha})$ 的实部和虚部分别是 ω 的偶函数和奇函数。

2.3 逆特征系统 D-1

逆特征系统完成特征系统 D. 的逆运算,即

$$D_{\bullet}^{-1}\{D_{\bullet}[x(n)]\} = x(n) \tag{9}$$

由于 x(n)和 x(n) 被认为是稳定的,因此 y(n)和 y(n) 也必然是稳定的序列。这样, Y(Z)和 Y(Z) 的收敛域必定包括单位圆,而有

$$y(n) = Z^{-1}[Y(Z)]$$
 (10)

$$Y(Z) = \exp[Y(Z)] \tag{11}$$

在卷积同态滤波处理中,必须设法避免在取复对数时出现模糊性的可能。

3 同态滤波的实现

由信号分析理论可知,可以将任意序列表示为加权、延迟的单位样值信号之和,即

$$x(n) = \sum_{m=-\infty}^{\infty} x(m)\delta(n-m)$$
 (12)

一般机器工作机构的动态载荷是随机平稳的,因此,上式中权值不是衰减的,即可以认为动态载荷相当于周期冲激信号序列。根据信号分析理论可知,周期冲激信号序列的复时谱除 n=0 原点外,其主要部分都集中在高倒频段,可用高时窗提取。另外,对于一般的机器系统而言,系统特性可用一零极点模型来表示。同样根据信号分析理论,具有零极点模型的信号序列其复时谱是集中在 n=0 原点附近的短序列,具有明显的短时性。这样,系统特性可用低时窗来提取。

根据上述原理, 要提取输入动态载荷信号, 有

$$\hat{y}(n) = \hat{x}(n) \cdot W(n) \tag{13}$$

要提取系统特性,则有

式中 W(n)为窗函数。同态滤波的 运算流程如图 2 所示。为比较滤 波效果,选用了矩形窗、海宁窗、 海明窗和平顶窗四种窗函数。

同态滤波中窗函数宽 4 度的确定[23]

时序模型是基于{x}建立起 来的,不论系统的输入是否可观 测,它都没有利用系统输入的任 何信息,而总是将白噪声 {a,} 视 为输入。因此, 它是建立在输出 等价原则上的等

价原则上的等价系统的数学模 型。当无法获得输入的情况下, 要提取实际系统的特性, 采用时 间序列分析的方法有突出的优 点。

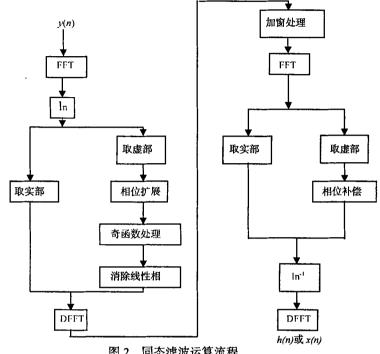
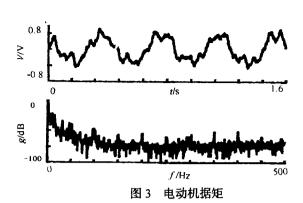


图 2 同态滤波运算流程

如将电动机瞬时扭矩信号 p, 作为时间序列进行建模, 所得到的等价模型的传递函数 $\theta(B)/\varphi(B)$ 应包含机器系统的固有特性。此时,输入转矩信号t,不是白噪声,但可认为t,是一成 形滤波器经过白噪声的激励而产生的。等价模型的传递函数为

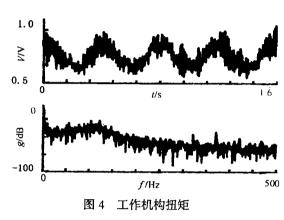
$$H(z) = A \frac{\prod_{i=1}^{n} (1 - \eta_{i} z^{-1})}{\prod_{j=1}^{n} (1 - \lambda_{j} z^{-1})}$$
(15)

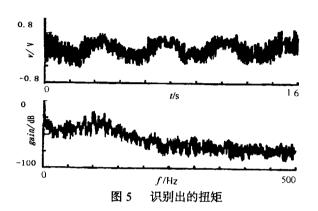

根据系统分析理论可知,具有上述传递函数的序列是一稳定的指数序列,其复时谱随着Inl的增 大而衰减,且衰减速度要比衰减的指数序列 $\alpha(n)$ 快n倍,即

$$|\hat{p}(n)| < C \frac{\alpha^n}{|n|}$$
 $-\infty < n < \infty$

式中 C 为一正常数, $\alpha = \max[|\eta_i|,|\lambda_i|]$,当 n=j 时, $\alpha_i = C\eta_i$ '或 $\alpha_i = C\lambda_i$ 由时序分析理论可得 Green 函数的表达式

$$G_{i} = \sum_{i=1}^{n} g_{i} \lambda_{i}^{j} \tag{16}$$


当模型建立后, g_i 已确定,故 g_i 可看作一系数,此时可认为 α_i 是 G_i 中的一项。当 $G_i \rightarrow 0$ 时, $\alpha_i \to 0$,所以可用 G_i 代替 α (n),从而用 G_i 的衰减速度来估计指数序列的衰减速度,以估计系统特 性在倒频域中的宽度,即估计窗函数的宽度。从系统的角度来看,等价系统的 Green 函数表示了等 价系统的单位脉冲响应特性,其中也包含了实际系统的特性。根据 Green 函数估计的窗函数宽度,



必然会覆盖实际系统的特性在倒频域中占的**宽** 度。

5 应 用[3]

图 3 是采用能量转换法测得的某采煤机工作时电动机的扭矩,图 4 是该采煤机工作时工作机构实际的扭矩,图 5 是电动机扭矩经过同态滤波后识别出的扭矩。与图 4 相比可看出两者较为一致,这说明采用同态滤波的方法可较好地识别出机器实际的扭矩。

6 结论

用同态滤波的方法可以将系统特性的影响消除,从而达到载荷识别的目的。采用根据时序模型的 Green 函数来估计窗函数的方法,可在没有任何输入信息的情况下,把窗函数宽度的选择限制在个较小的范围内,大大减少了选择的盲目性。

参考文献

- 1 郑南宁, 数字信号处理, 西安:西安交通大学出版社, 1991
- 2 扬叔子,吴 雅. 时间序列分析的工程应用. 武汉: 华中理工大学出版社, 1991
- 3 陈 羽中. 用能量转换法识别转矩载荷谱的研究: [学位论文] 徐州: 中国矿业大学博士论文, 1995.

Application of Homomorphic Signal Processing in Torque Load Identification

Chen Chong

(Dept. of Automotive Engineering, Sichuan Institute of Technology Chengdu 611744)

Abstract In this paper, the theoretical analysis and the experiments show that the load spectrum of a machine can be extracted from the output signal by homomorphic signal processing. A method of determining the window width according to the Green function of a time series model is presented as well. So it is easier to choose the width in a limited range. As an example, the torque identification of a shearer drum is described.

Key words signal processing; load identification; homomorphic signal processing; time series