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Enumeration of Some Circular Graphs®

Zhang Xiandi Sun Shixin
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Abstract The structures of circular graphs of degree 4 are discussed. All non-isomorphic connected
circular graphs with order » and degree 4 are divided into two types: type T and type I1. A formula calculating the
number of type I is given. The formula about enumeration of circular graphs of non-isomorphic with order » and
degree 4 is improved.
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1 Introducation

The terminology and notation in this paper are similar to Ref.[1]. All graphs discussed here are finite
and simple.

Let Z,={0,1,2, - ,n-1}, Sc Z,-{0}, -S=S (mod n), namely there exist ji, j,, -+, j, such that § =
UrsJas o o jri—jys B=fa, -+, n—=],}. S is called characteristic set.

Definition 1 The graph G with order n is called circular graph if it satisfies:

(i) nG)=2,;
(i)  E(G) = {(iy) | Jj—ie S},where the operation takes module ».
The graph G in definition 1 is denoted by C,{j;, ja, *** , j,), where ji<j, < - <j,, j|, ja, + , Jrare

called spanning elements.

The structures of circular graphs having degree 3 have been given. Some upper bounds of number of
the non-isomorphic circular graphs having order n and degree k have also been obtained. But, the accurate
number is not given. In this paper, we discuss the structures of circular graphs of degree 4. Then we
improve the formula in Ref.[2] about enumeration of circular graphs with order n and degree 4.

et ged(x.y) be the maximum common divisor of x,y. It is proved that a circular graph C,{j, wJrsagp
is a connected graph if and only if ged(n, ji, j», -+ ,j,) =1 or ged(my,m,, -+ ,m,) =1 where m,= ged(n,j).
It is also proved that if G is a non-connected circular graph with degree k, then any two connected
components of G are isomorphic circular graphs of degree k. So, we only discuss connected circular graph.

Given a positive integer n (n=24).Let

(n/2)—1 n is even
o = {(n—l)/2 n s old
and G,= {C,{uy) lu<v; uve {1.2,..., f(n)} and ged(n ,u,v) =1}. G, contains all connected circular graphs
with order n and degree 4. But, for any Gi).Chs.HeG,, G ijy and C,(s,ty may be isomorphic. The
cardinality of a set S is denoted by |S], Lm ] denotes the smallest integer =m. Suppose n= p,“Vp,®® .. p, ¥
where py, pa, -+, p, are the distinct prime divisors of n, we have

S T T ) ol

=1 =l > =1 > h>y

where lelm_r:l‘*.f(n) J
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For integer x,p,z, if x=a (mod n), 0=<a < n, then let
<x>'={“ 0<a<|n2]
" ln-a  a={ne2]

Clearly (x)",€{0,1, ---,Ln/2]} and x = tnta. Let N,= {0,1, --- , Ln/2J}, M= {glgcd(ng) =1, 1<
g<n/2} and m=|M,|. Clearly m= @(n)/2,where ¢ (n) is Euler function, i.e, ¢(n) is the number of integers
between 1 and » which are relatively prime to n . We define operator * in N, as follows

x*y=(xy)’, for all x,yeN,

Lemma 12 Forall x,y,ze N, and geM,, we have

(i) (exp)*z = xr(yrz);

(ii) ifg*x =g*y,thenx=y.

Given C, (i, ) eG,, let

AG)) = {Chuv) | CluvyeG, and Cluv) = Cliyd}
where C,(u,v) = C,{ij) means that the graphs C,{u,v) and C,{i,j) are isomorphic. Clearly, the relation = is a
equivalent relation in G, and A(iy) is a equivalence class of the equivalent relation.

Let ()", = (b,c), where {b,c}={(x)",, ",} and b< c.

Definition 2 2 Let 4(4,v) be a equivalence class in G, for the relation= and M, = {g,,92, - , G}
A(u,v) is called a I-equivalence class,if (g u,g V)", (Ga.gv) n, *+ 5 (Guitsgmv)'n are all distinct. Otherwise,
A(u,v) is called a I-equivalence class .

Ref. [2] shows that a equivalence class A(u,v) is a I-equivalence class if and only if there exists
geM,—{1} such that {g*u,g*v}={u,v}. Let

G'= {Auy) | CuvyeG,
Clearly, | G, | is the number of circular graphs with order n and degree 4. Ref.[2] shows

IG,|-TZ

Gl=——2 4T 6}
m

where 7= | {4(u,v) | A(w,v) € G*, and A(w,v) is a I-equivalence class} | and 7= 0 if m is odd. But, how to
compute 7' is not given by Ref.[2] .In the following , we determine the structure of a circular graph which is

a I-equivalence class, then give out a formula about 7.

2 Main Results

Definition 3  Let C,(k,k,) be a generator of equivalence class 4 . C,(k; ,k,) is called a min-generator
if &y =min{x; | C,0x; ) €4}, k= min{x, | Ckixped}.

Lemma 2B C (k) k) = C, (k'K ) if and only if there exists a ge M,, such that (gk,,gky)" =k k' ).

Lemma 2 implies that A(u,)={C,(x) | (xy) = (qu,gv)"» ge M, }.

Lemma 3 For ke N,-{0}, lets = gcd(k,n). Then s<(qk)", for all ge M,

Proof Since s=gcd(k,n), there exist two positive integers ¥’ and »' such that k =k's and n = n's.
Suppose gk = an + r where a is a integer and reN,,.So, gk—an =t r = gk's—an's =+ r = s(gk'~an' )=+ r =
s<r, ie s<(gk), T

Lemma 4 C,(u,v) is a min-generator of equivalence class 4 if and only if uln where 1 <u< v < n/2
and ged(n,u,v) =1.

Proof Let

u= . {gcd(k',n), ged(k",n)} 2)

min
Co(K kY
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Suppose u = ged(k,,n), correspondingly, C,(k,k)eA. Since ged(u,n) = u = ged (ky,n), we have C {u)
= C (k). According to Lemma 2 (for circular graphs of degree 2, Lemma 2 is also true ), there exists a
ge M, such that
(gkp=u 3)
Let
gk =V (4)
we have, for Eq.(2) and Lemma 3, u<{gcd(k, ,n) = ged(gk, ,n) <{gk)", = v.
By Eqgs.(3),(4) and Lemma 2, C,{k; ,k) = C,{ u,V'). Hence C,{ u,v')e A. For all C,{k'.k"YeA, by
Eq.(2),we have
usgedK n)<k
u<sgedk”' n<k'
Let v=min{y' | C,{u,v") € A}. Then C,{u,v) is a min-generator of A.

For all C (kK" € A, if ¥ |n is not true, then k>ged(k,n).So, u<sged(ky,n) < k. 1t follows that
C (kK" is not a min-generator of 4 [

Lemma 5 Let 15k < ky < n/2, ky|n, koln, ged(k, ,ky) = 1, then

(i) C,{ky,.ky is a min-generator of the equivalence class Ak, ,ky);

(i) if A(k, ,ky) is a I-equivalence class, then kik,=n/2 or kik=n.

Proof (i) Forany C{x,y)eA(ky,ky), there exists a ge M,, such that {(gk, ,gk)",= (x,y) . By Lemma 3,
ki<(gk)’y, k2S{gkp)’ ki<k, . Hence ky<min {{qk)", , {gk») s} = min{x,y}.

Since (gk)",=k,> k, forall geM,, C,lkky) is a min-generator of A(k, ,k,).

(i)  Since ky|n. kyln. ged (ky k) = 1, we have n = n'kik,, where ' is a positive integer. C,{k; ,k,) is a |-
equivalence class. So, there exists a ge M, and g=1 such that {(gk, ,qk,)",= (k1,ky. It implies that

gki=an* ky (5)
gk,=bnt k, (6)

Case | gky=an+k,and gk,=bn + k.

According to ged(k, k2 =1,we have xk,+ yk,= 1. So, g = g(xk, +yky) = xgki*+ ygk, = x(an+ k))+ y(bn+
ky) = (xat yb)n +(xkit yky) = (xat+ yb)n +1 = g=1 (mod n) = g=1(because geM,). It contradicts g=1.
Hence this case does not occur.

Case 2 gk,= an—k; and gk,=bn-k, . Similar to case 1, this case does not occur.

Case 3

gky=an+ k, (7)
gk, = bn—k;, )]

By Eq.(7)xk; and Eq.(8)xk,, we obtain 2kk, = ank, —bnk, = kik,= (ak, ~bk\)(n/2) = kik, =0 (mod
n/2).

Case 4 gk,= an—k, and gk, = bn + k, . Similar to case 3, we have kk,=0 (mod n/2).

Since n=n'kk, and ki< k, wehave | < kik,;<n. So, kky=n/2 or kyk,=n "

Lemma 6 Suppose | <<ki< I< ky< n/2, ged (n,ky) = ky, ged (n,k,) =1 and ged (ky, k) = 1. If Clk ke
belongs to a I-equivalence class, then C, ¢k, k) = C,{ky, D).

Proof Since ged (n,ky) = /, there exists a integer u such that k,= /u. Clearly, ged (n,u) = 1. Consider
I<u <n/2.So, ue M, It follows that k,= lu = /*u ( because 1< ky<n/ 2 ).

Since  C,{ky.ky) belongs to a [-equivalence class, there exists a ge M, g#1 such that {gk;, gky)*,= (k; ,
k) = qxky= ky= g*(I*u) =l*u = (g*])*u = Ixu = g*| =1 (according to Lemma 1) = (gk; ,qD",= (k;,.]) =
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C, (kD) is a min-generator of the [-equivalence class A(k; ,)) = k;/ = n/2 or k)l =n ( by Lemma 5) = 2k,/ =
0 (mod n).
Since gcd(k,,/) =1, there exist integers x,y such that xk,—y/ = 1. It follows that
Coky + pl)-2y1 = 1
—(xk—yl) + 2xk;= 1
Let go=xk,+ yl, we obtain

Go—2yl=1 )
—got 2xk = 1 (10)

So, gcd(go,d) = 1 and ged(gq ,2k;) =1=>ged(n,gy) = 1.

By Eqgs.(9) and (10), (go—1)k, = 2lky and (go +1)] = 2lkx=(go— 1)k, =0 (mod n) and (g + 1)/ =0 (mod
n) because 2/k, =0 (mod rn). So, q¢k; = &, (mod n) and go = n—! (mod n).

Let ¢' = {(go",. We have gcd(g',n) = gcd(go .n) = 1, ¢'eM,, and ¢'#1. On the other hand, ¢'k, = k,
(mod n) and g'! = n—I (mod n). Hence C,{ky kp) = C. (kD T

Theorem 1 Let 1<k, < k,<n/2, ged(nk)) = &y, and ged(k,,ky) = 1. Then, C,{ky,k,) is a min-generatar
of the I-equivalence class A(k,, k;) if and only if

(i)ifky =1, then (k,D",=1 and k, e M,,;

(i) if &, >1, then k1k=n/2 or kik, = n.

Proof Suppose C,(ky, k) is @ min-generator of A(k,k,). Let ged (n,k))=L:

Case 1 [ =k, By (ii) of Lemma 5, we have kk, = n/2 or kk,= n.Obviously, k; >1.

Case2 [<k;and ky</l. By Lemma 6, C,{k,ky) = C, (kD). Thus, C,(k1,0) is a min-generator of A(k,k3).
It is contradiction because C,{k,,k,) is a min-generator of 4(k,k,). So, this case does not occur .

Case3 [ <k;andk; =1 In this case gcd(n,ky,k;) = k;. Since ged(ky,k,) = 1, we have k| =1.

Since A(ky,k,) is a I-equivalence class, there exists a ge M, (g#1) such that (gk,gky", = (kik), i.e.
(g,9k%)",= (1,ky). Hence k, = ¢ and (k2" ,=1.

Conversely, suppose (i) and (ii) are true. For (ii), by (i) in Lemma 5, C,(k,, k) is a min-generator of
A(kky).

For (i), since kye M, and ky>1, we have (kykpkko)', = (kp K2 = (1) = (kv k). So, Clky, k) is a
min-generator of A(k,k,) [

The structure of a [-equivalence class is given by Theorem 1. The number of the I-equivalence classes
will be obtained by the following theorem.

Theorem 2 Let T denote the number of I-equivalence in G,, and n = p;%" p,"@ ... p,*® where p,, pa,
.-+ ,py are the distinct prime divisors of n. Then, T'= T+T,, where T, denotes the number such that {(g%°,=1
inM,—{1},and

325 -1 n is even and n/2 is odd
T,=424 -2 n iseven and /2 is even (11)
2 1 nis odd

Proof By Lemma 4, the min-generator C,(k,k,) of I-equivalence class should satisfy k;jn. Since the
graph C,{ky,ky is connected, we have gcd(k,k;) =1. So, T should be computed in terms of (i) and (ii) in
Theorem 1. It is easy to say that the number of I-equivalence classes which satisfy (i) in Theorem 1 is 7.
Let T be the number of I-equivalence classes which satisfy (ii) in Theorem 1. First, the number of distinct
pair {k,k,} such that k;k, = n and (ii) in Theorem 1 is 2*"!-1. This is because the number partitioning the k-
set {p, ™Y, p,®3, ... p, %9 Yinto two blocks is 241, Similarly, for n/2 even the number of distinct {k,k,}
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such that kk, = n/2 is also 2%~ 1. For n even and n/2 odd, since we have n/2=p,*®p,%3 ... p,®® the number
of distinct {ky,k,} such that kk, = n/2 is 2¥>~1. So, we can obtain Eq.(11) by simple computation C

As mentioned above, we obtain a computational formula and method about T of Eq.(1). Therefore the
formula (1) is improved.

Example For n = 23x3 = 24, we have | Gy | =42, My = {1,5,7,11} and m = 4. Thus T,= 22 = 222
= 2. Since (5% = (7%= (1175, =1, we obtain 7} =3. Thus 7=2+3=5. Therefore | G* | = 8+5 =13.

Since the circular graphs of degree 5 can be obtained by adding the generator n/2 (n is even) to a
circular graph of degree 4, the structure and the number of the circular graphs of degree 5 can be discussed

analogously.
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