30 6 Vol.30 No.6
2001 12 Journal of UEST of China Dec.2001

A Dynamic Scheduling Service M odel
for Real-Time CORBA’

LuoZhigang TanHao LiuJinde
(College of Computer Science and Engineering UEST of China Chengdu 610054)

Abstract The architecture of scheduling service specified in real-time CORBA is introduced and its limitation is analyzed
in details. Through cooperation of client scheduler and server scheduler, the admission test that whether a new client is permitted
to execute on a particular processing node is accomplished. Based on the admission test, adynamic scheduling service model is
proposed, which overcomes the limitation of current real-time scheduling service and can be applied to a dynamic open real-time
CORBA system. At the end, adynamic CORBA system based the scheduling service is presented.

Key words red-time CORBA; scheduling service; dynamic scheduling; admission test

1 Introduction

Traditional real-time systems are often highly optimized, but closed ones. They are really proprietary
in that they are constructed for particular problem domains. Real-time software systems are extremely
expensive and time-consuming to develop, validate, optimize, deploy, maintain and upgrade. Moreover,
The use of specialized technologies of one kind or another makes the solutions are harder to adapt to new
requirements, new technologies and new market opportunities. Real-time CORBA brings CORBA and
real-time systems world together™™?!. It provides real-time systems with lots of advantages supported by
CORBA, such as portability, interoperability, maintainability, reusability, etc. Real-time CORBA will be
beneficial to system builders and system integrators in markets such as telecommunications and
manufacturing, where opennessis gradually becoming crucial to competitiveness.

In order to simplify the development of real-time CORBA application, real-time CORBA specifiesa
scheduling servicd? that uses the real-time CORBA primitives to facilitate enforcing various
fixed-priority real-time scheduling policies across the real-time CORBA system. The scheduling service
abstracts away from the application some of the complication of using low-level rea-time CORBA
constructs, such as the POA policies. Application that uses an implementation of the scheduling serviceis
assured of having a uniform real-time scheduling policy, such as global rate monotonic scheduling with
priority ceiling, enforced in the entire system. The scheduling service uses “names’ (strings) to provide
abstraction of scheduling parameters (such as CORBA priorities). The application code uses these names
to specify CORBA activities and CORBA objects. The scheduling service internally associates these
names with actual scheduling parameters and policies. This abstraction improves portability with regard
to real-time features, eases use of the red-time features, and reduces the chance for errors.

However, the scheduling service is designed to work in a“closed” CORBA system where the fixed
priority policy isrequired for a static set of clients and servers. In such system, if some factors change, for
instance a new client need to be added in the system, the whole system must be redesigned.

In order to adapt to dynamic environment and make real-time CORBA systems keep open, it is
necessary to introduce dynamic scheduling service into rea-time CORBA environment. Dynamic
scheduling here doesn’ t mean that the scheduling algorithm must be dynamic scheduling one, such asEDF
and MLF, but that scheduling service can adapt to dynamic environment. For instance, when a new client
enters the system, the scheduling service can determine whether it is permitted to execute on a particular
processing node with simple admission test. Based on the definition, a dynamic scheduling service is
presented in the paper, which is implemented by cooperation between client scheduler and server

Received on Aug. 27, 2001
*The project is supported by National Defense Research Foundation

6 : CORBAR 619
scheduler.

The remainder of the paper is organized as follows. Section 2 presents the related search work on the
dynamic scheduling for real-time CORBA ; Section 3 describes the dynamic scheduling scheme in detail ;
Section 4 gives the conclusion.

2 Reated Work

Several researches have done in the area of dynamic scheduling for real-time CORBA systems.
Among these researches, the representatives are: 1) TAO : 2) NRaD/URI RT-CORBAand 3) EPIQ!*3.

The ACE ORB(TAO) developed at University of Washington in St.Lousis by Schmidt et. a®
addresses many of the issues involved in providing support for hard and soft real-time applications in
both static and dynamic environment. A strategized scheduling service framework for TAO have been
developed to support dynamic scheduling®. Currently, TAO' s scheduling service can perform both
off-line and on-line feasibility analysis, in term of the scheduling algorithm which the developer choose.
TAO relies on cooperation of off-line and on-line feasibility analysis to guarantee that the deadline of
real-time tasks will be met on a particular object, and hence, guarantee the QoS for that object. But
scheduling in TAO focuses on single CPU rather than the distributed scheduling problem.

Wolfe, et a, have developed a real-time CORBA a US Navy Research and Development
Laboratories (NRaD) and University of Rhode Island (URI) . NRaD/URI RT-CORBA presents a new
CORBA global priority service”. It uses EDF within important level. The scheduler supports on-line
scheduling and allows clients to be admitted at run-time. Due to the dynamic nature of NRaD/URI
RT-CORBA, their on-line EDF scheduler doesn’ t offer the guarantee of an off-line RM scheduler and,
unfortunately, can behave non-deterministically under heavy loads, thus providing only best-effort
guarantees.

The EPIQ project defines an open real-time CORBA scheme that provides QoS guarantees and
run-time scheduling flexibility®™. EPIQ explicitly extends TAO' s off-line scheduling model to provide
on-line scheduling. In addition, EPIQ alows clients to be added and removed dynamically via admission
test at run-time. The scheme is based on an open scheduling architecturd®, which provides a tow-level
scheduling approach where each application is assigned a constant utilization server or total bandwidth
server at upper level. At lower level, the OS scheduler maintains and schedules each of the servers by an
EDF policy. The two-level scheduling approach allows developers of each real-time application to
validate the schedulability of the application independently of other applications. The scheme relies on
the two-level scheduling architecture, which is implemented by modifying OS kerndl, so it is impossible
to implement the scheme on conventional OS.

The above scheduling schemes focus on scheduling server object. However, the scheduling for a
real-time CORBA application should include scheduling of client object and server object. So it is
necessary for the schedulers of both sides, client and server, to cooperate to accomplish the scheduling of
the whole real-time application. The dynamic scheduling scheme in the paper is just based on cooperation
of client scheduler and server scheduler.

3 Design of A Dynamic Scheduling Service M odel

In order to make Real-time CORBA scheduling service work in a dynamic open real-time CORBA
system, the scheduling service should alow clients to be added and removed dynamicaly. The way of
extension presented here is as follows: 1) introduces dynamic scheduling mechanism, which could refer
to TAO' s scheduling framework and EPIQ’ s admission test method for dynamic clients®*¥; 2) makes
client scheduler and server scheduler cooperate to negotiate the end-to-end timing constraints and reserve
corresponding resource.

3.1 Dynamic Client

For a real-time CORBA system, adding a new client, it must guarantee the existed applications
timing constraints firstly. If the new client's timing constraints can be satisfied, it will be permitted to
execute. Extending scheduling service from static to dynamic has a basic rule: application might use fixed

620 30
priority scheduling for part of the workload while the dynamic scheduling for only a subset of the
RTOS Priority range®. Conventionally, applications whose timing properties can be determined before
run-time use off-line schedulability analysis to decide their schedule. Only those applications whose
timing properties can not be determined before run-time use dynamic scheduling. Thisis because the cost
of dynamic scheduling is expensive, especialy for complex real-time system. To dlow a new client
request to be handled on-line, the model proposed in EPIQ is used here and shown as Fig.1.

Fig.l Dynamic Client

As an example, Fig.1 shows a scenario with three clients, a server and the server's scheduling broker.
Client 1 and Client 2 can be validated and created corresponding schedule by off-line schedulability
analysis before run-time. At run-time, the schedule is then used by the server’ s run-time scheduler to
schedule requests from Client 1 and Client 2. Compared with Client 1 and Client 2, before server’ s
run-time scheduler schedules request from Client 3, the request must first go through scheduling broker
for schedulability analysis (i.e. admission test). The request from Client 3 can be processed as following
steps (1~5in Fig.1):

1) Client 3 requests scheduling broker to make admission test;

2) Once receiving admission test request from Client 3, the scheduling broker make schedulability

analysis and then sends to clients the result whether being accepted or being refused;

3) If scheduling broker agrees to admit Client 3, it will notify server object to reserve resource;

4) If client has been admitted, it will begin to invoke remote operation;

5) The server returns the resullt.
3.2 The Cooperation of Client Scheduler and Server Scheduler

Fig.1 shows the run-time view of scheduling broker, but the details of admission test is ignored.
Compared with TAO and EPIQ, admission test proposed in the paper is accomplished by cooperation of
client scheduler and server scheduler. Fig.2 shows the details of cooperation among clients, client
scheduler, server scheduler and server.

Schedule activity(*A”)

Other
ServerSchedul

i ServerScheduler

en
%%
k\\

Fig.2 Detalsof Admission Test

ClientScheduler

The process of scheduling a dynamic client’ s activity A can be described as follows:
1) When activity A arrives, client scheduler will be called for admission test (1 in Fig.2);

6 : CORBAR 621

2) Client scheduler sends admission test request to each server scheduler (2 in Fig.2);

3) Each server scheduler makes admission test. If the system can meet on the timing constraints, the
server scheduler will indicate client scheduler that the activity is permitted to execute;

4) Otherwise, the activity will be refused. (3in Fig. 2);

5) If the activity is permitted to execute, the server scheduler will configure the server and reserve
corresponding resources (4 in Fig.2);

6) Client scheduler collects all return results. If all admission test are successful, the activity A will
be schedule (5 in Fig.2), otherwise the activity A isrefused, meanwhile do as step 8;

7) The activity A begins to invoke the remote operation(6 in Fig.2);

8) While activity A terminates, it requests client scheduler to release resource (7 in Fig.2);

9) Client Scheduler requests each server scheduler to release resource (8 in Fig.3), and then
terminates activity A;

10) Server scheduler release resource (9 in Fig.2).

As we know, a real-time CORBA client uses activity as scheduling unit. An activity A is a set of
remote methods: M={my, my, » m,}. To describe the cooperation process, several mappings are defined:
faiiendA), fserver(M) @nd fopject(Mi). fiend(A) represents client scheduler that is responsible for scheduling
activity A. fsrver (M) represents the server scheduler that is responsible for scheduling the object in which
method my is, fonject(M;) represents the server object. Activity A can be described as follows:

Get information about activity A, such as M={ my, mp, »x my};

Get ClientScheduler reference;

/[Enter try region

admit= ClientScheduler- >trySchedule(»%);

IF (admit==FALSE) THEN EXIT; ENDIF

//Exit from try region, then enter operation region

/IStart to invoke remote methods

2K

//End to invoke remote methods

//EXit from operation region, then enter exit region

ClientSchedul er- >Rel ease(#);

/[EXit, terminate A

Activity A can be divided into three regions: Try region, Operation region and Exit region. In Try
region, client scheduler is called for admission test. If the test passes, activity A will enter Operation
region, otherwise, aborts the activity. In Operation region, severa remote invocations will be invoked in
turn. In Exit region, resource will be released and activity A ends. It is hecessary to point out that above
operations are transparent to devel oper, only except that the operation in Operation region are defined by
developer. For instance, a client can be written as follows:

ClientScheduler_var clt_sched= create scheduling service object;

objectl var obj1 = /* something */ //get and bind objects

objectl var obj1 = /* something */

BENGIN_ACTIVITY(clt_sched, “ activity1”)

obj1 - > methodl () ;

obj2 - > methodl () ;

END_ACTIVITY

BENGIN_ACTIVITY(clt_sched, “ activity2”)

obj1 - > method2 () ;

obj2 - > method2 () ;

END_ACTIVITY

From the above, it is clear that many operations are hidden by macro “BEGIN_ACTIVITY” and
“END_ACTIVITY”.

Client scheduler mainly provides two operations for the scheduling activity: operation

622 30

“trySchedule’ that makes admission test and operation “Release’ that releases resource. They are
defined as follows:
trySchedul e(»)
{
FOReachmi M; { /Irequest each Server Scheduler to make admission test
ServerSchedul er= feerver (M)
ServerScheduler->AdmissionTest(Req, *¥;
}
ENDFOR
Collect return value R={ry rp, »x rp};
/N al return values are ACCETED, the test passes.
IF (" rjl R rj ==ACCEPTED) THEN return TRUE
ELSE //Otherwis, release the resource that have been reserved
FOReachmi M; {
IF (rj== ACCEPTED) THEN {
Illrequest ServerScheduler to release resource
ServerSchedul er= feerver (M)
ServerScheduler- >Terminate();}

ENDIF
ENDFOR

ENDIF

}

Release(9)

{

llrequest each Server Scheduler to release resource
FOReachmi M {
ServerSchedul er= feerver (M)
ServerScheduler- >Terminate();}
ENDFOR
}
In fact, a two-phase protocol isused in operation trySchedule. Only all servers can accept the
corresponding request, then the activity will be scheduled, otherwise it will be given up.
Server scheduler mainly provides two operations. operation AdmissionTest that makes on-line
schedulability analysis and operation Terminate that releases resource. They are defined as follows:
AdmissionTest(Reg,)
{
GET information from static repository and run-time repository;
make schedulability analysis;
IF Schedulable THEN {//If the server can accept it, it need to reserve corresponding resource
Configure server and reserve resource;
Store information about m; to runtime repository;
Req.SendReply(ACCEPTED);
ELSE
Req.SendReply(REJECTED));
ENDIF

}
Terminate()

{

//Release resource
cancel server configuration and resource reserved,

6 : CORBAR 623
delete information about m; from run-time repository;
return;

}

The datic repository and the run-time repository used in Server Scheduler will be defined in next
section.
3.3 Dynamic CORBA System

The scheduling services implemented in the research can support both static scheduling and
dynamic scheduling. A scheduler includes off-line scheduler and on-line scheduler. Based on the
dynamic scheduling service, dynamic and open real-time CORBA system can be implemented as Fig.3.

The real-time applications and the configuration information are analyzed by off-line scheduler,
and the corresponding static scheduling information is stored in static scheduling repository. The step is
necessary for those applications that need fixed priority scheduling. But for the dynamic clients, on-line
schedulability analysis should be done by on-line scheduler, in term of the information in dynamic
information repository and the static scheduling information. The tasks will be dispatched by OS
dispatcher according to the schedule that is created by scheduler.

configuration
App layer
off-line R static
scheduler ~ repository
online rurttime
scheduler %@ repository
rm@v
admission test Sched Layer
runtime queue -
run-time
| | | | |—’<— system
OSLayer

Dispatcher clock

Fig. 3 Components of Dynamic CORBA System

4 Conclusion

Introducing scheduling service into real-time CORBA helps to simplify development of real-time
applications. Scheduling service defined in real-time CORBA 1.0 uses fixed priority scheduling methods,
which only can be applied to a*“ closed” CORBA application system. In the paper, adynamic scheduling
service model is proposed, which can be applied to a dynamic, open real-time CORBA system. A
dynamic client is permitted to execute on a particular processing node with simple admission test. The
admission test is accomplished by cooperation of client scheduler and server scheduler.

References

1 Su Sen, Tang Xuefe, Liu Jinde. Object-oriented interoperability technology. Journal of University of Electronic

Science and Technology of China, 1998, 27(1): 90~94[
, 1998, 27(1): 90~94]

2 Object Management Group. real-time CORBA joint revised submission. OMG Document orbos/99-02-12 ed.
1999

3 Schmidt D C, Levine D, Mungee S. The design of the TAO rea-time object request broker. Computer
Communications Special Issue on Building Quality of Service into Distributed Systems, 1998, 21(4):69~86

624 30

4 Wolfe V F, DiPippo L C. Red-time CORBA. Proceedings of the Rea-Time Technology and Applications
Symposium, |EEE, 1997, 148-157
5 Feng W C, Syyid U, Liu W S. Providing for an open real-time CORBA. Proceedings of the IEEE Workshop on
Middleware for Distributed Real-Time Systems and Services, IEEE. 1997,135~141.
6 Gill C, Levine D, Schmidt D C, et al. The design and performance of a rea-time CORBA scheduling service
Real-time Systems, Kluwer, 2001, 20(2): 57~78
7 DiPippo L C, Wolfe V F A scheduling service for a dynamic rea-time CORBA system. in the proceedings of the
twenty-second annual international computer software and application conference, IEEE, 1998,189~196
8 Deng Z, LiuW S. Scheduling real-time applications in an open environment. Proceedingsof |IEEE 18" Redl-Time
Systems Symposium , |EEE, 1997, 308~319
9 Object Management Group. Dynamic scheduling initial submission. OMG Document orbos/99-10-06, 1999
10 Wang Zhiping, Xiong Guangze. Study of red-time scheduling algorithm. Journal of University of Electronic
Science and Technology of China, 2000, 29(2):205~208 [,
, 2000, 29(2):205~209]
11 Luo Le, Xiong Guangze. Research on worst case design of real-time multitasking applications. Journal of University
of Electronic Science and Technology of China, 1997, 26(1):74~77] ,
, 1997, 26(1):74~77]

* %

CORBA "
* %
(610054)
CORBA
CORBA CORBA
CORBA
CORBA
TP301.6
2001 8 27

27

