
第 30 卷 第 6 期 电 子 科 技 大 学 学 报 Vol.30 No.6
 2001 年 12 月 Journal of UEST of China Dec.2001

A Dynamic Scheduling Service Model
for Real-Time CORBA∗
Luo Zhigang Tan Hao Liu Jinde

(College of Computer Science and Engineering，UEST of China Chengdu 610054)

Abstract The architecture of scheduling service specified in real-time CORBA is introduced and its limitation is analyzed

in details. Through cooperation of client scheduler and server scheduler, the admission test that whether a new client is permitted

to execute on a particular processing node is accomplished. Based on the admission test, a dynamic scheduling service model is

proposed, which overcomes the limitation of current real-time scheduling service and can be applied to a dynamic open real-time

CORBA system. At the end, a dynamic CORBA system based the scheduling service is presented.

Key words real-time CORBA; scheduling service; dynamic scheduling; admission test

1 Introduction
Traditional real-time systems are often highly optimized, but closed ones. They are really proprietary

in that they are constructed for particular problem domains. Real-time software systems are extremely
expensive and time-consuming to develop, validate, optimize, deploy, maintain and upgrade. Moreover,
The use of specialized technologies of one kind or another makes the solutions are harder to adapt to new
requirements, new technologies and new market opportunities. Real-time CORBA brings CORBA and
real-time systems world together[1,2]. It provides real-time systems with lots of advantages supported by
CORBA, such as portability, interoperability, maintainability, reusability, etc. Real-time CORBA will be
beneficial to system builders and system integrators in markets such as telecommunications and
manufacturing, where openness is gradually becoming crucial to competitiveness.

In order to simplify the development of real-time CORBA application, real-time CORBA specifies a
scheduling service[2] that uses the real-time CORBA primitives to facilitate enforcing various
fixed-priority real-time scheduling policies across the real-time CORBA system. The scheduling service
abstracts away from the application some of the complication of using low-level real-time CORBA
constructs, such as the POA policies. Application that uses an implementation of the scheduling service is
assured of having a uniform real-time scheduling policy, such as global rate monotonic scheduling with
priority ceiling, enforced in the entire system. The scheduling service uses “names” (strings) to provide
abstraction of scheduling parameters (such as CORBA priorities). The application code uses these names
to specify CORBA activities and CORBA objects. The scheduling service internally associates these
names with actual scheduling parameters and policies. This abstraction improves portability with regard
to real-time features, eases use of the real-time features, and reduces the chance for errors.

However, the scheduling service is designed to work in a “closed” CORBA system where the fixed
priority policy is required for a static set of clients and servers. In such system, if some factors change, for
instance a new client need to be added in the system, the whole system must be redesigned.

In order to adapt to dynamic environment and make real-time CORBA systems keep open, it is
necessary to introduce dynamic scheduling service into real-time CORBA environment. Dynamic
scheduling here doesn’t mean that the scheduling algorithm must be dynamic scheduling one, such asEDF
and MLF, but that scheduling service can adapt to dynamic environment. For instance, when a new client
enters the system, the scheduling service can determine whether it is permitted to execute on a particular
processing node with simple admission test. Based on the definition, a dynamic scheduling service is
presented in the paper, which is implemented by cooperation between client scheduler and server

 Received on Aug. 27, 2001
*The project is supported by National Defense Research Foundation

第 6 期 骆志刚 等 : 一个实时 CORBAR 的动态调度服务模型 619

scheduler.
The remainder of the paper is organized as follows: Section 2 presents the related search work on the

dynamic scheduling for real-time CORBA; Section 3 describes the dynamic scheduling scheme in detail;
Section 4 gives the conclusion.

2 Related Work
Several researches have done in the area of dynamic scheduling for real-time CORBA systems.

Among these researches, the representatives are: 1) TAO[3] ; 2) NRaD/URI RT-CORBAand 3) EPIQ[4,5].
The ACE ORB(TAO) developed at University of Washington in St.Lousis by Schmidt et. al[3]

addresses many of the issues involved in providing support for hard and soft real-time applications in
both static and dynamic environment. A strategized scheduling service framework for TAO have been
developed to support dynamic scheduling[6]. Currently, TAO’s scheduling service can perform both
off-line and on-line feasibility analysis, in term of the scheduling algorithm which the developer choose.
TAO relies on cooperation of off-line and on-line feasibility analysis to guarantee that the deadline of
real-time tasks will be met on a particular object, and hence, guarantee the QoS for that object. But
scheduling in TAO focuses on single CPU rather than the distributed scheduling problem.

Wolfe, et al, have developed a real-time CORBA at US Navy Research and Development
Laboratories (NRaD) and University of Rhode Island (URI) [4]. NRaD/URI RT-CORBA presents a new
CORBA global priority service[7]. It uses EDF within important level. The scheduler supports on-line
scheduling and allows clients to be admitted at run-time. Due to the dynamic nature of NRaD/URI
RT-CORBA, their on-line EDF scheduler doesn’t offer the guarantee of an off-line RM scheduler and,
unfortunately, can behave non-deterministically under heavy loads, thus providing only best-effort
guarantees.

The EPIQ project defines an open real-time CORBA scheme that provides QoS guarantees and
run-time scheduling flexibility[5]. EPIQ explicitly extends TAO’s off-line scheduling model to provide
on-line scheduling. In addition, EPIQ allows clients to be added and removed dynamically via admission
test at run-time. The scheme is based on an open scheduling architecture[8], which provides a tow-level
scheduling approach where each application is assigned a constant utilization server or total bandwidth
server at upper level. At lower level, the OS scheduler maintains and schedules each of the servers by an
EDF policy. The two-level scheduling approach allows developers of each real-time application to
validate the schedulability of the application independently of other applications. The scheme relies on
the two-level scheduling architecture, which is implemented by modifying OS kernel, so it is impossible
to implement the scheme on conventional OS.

The above scheduling schemes focus on scheduling server object. However, the scheduling for a
real-time CORBA application should include scheduling of client object and server object. So it is
necessary for the schedulers of both sides, client and server, to cooperate to accomplish the scheduling of
the whole real-time application. The dynamic scheduling scheme in the paper is just based on cooperation
of client scheduler and server scheduler.

3 Design of A Dynamic Scheduling Service Model
In order to make Real-time CORBA scheduling service work in a dynamic open real-time CORBA

system, the scheduling service should allow clients to be added and removed dynamically. The way of
extension presented here is as follows: 1) introduces dynamic scheduling mechanism, which could refer
to TAO’s scheduling framework and EPIQ’s admission test method for dynamic clients[9~11]; 2) makes
client scheduler and server scheduler cooperate to negotiate the end-to-end timing constraints and reserve
corresponding resource.
3.1 Dynamic Client

For a real-time CORBA system, adding a new client, it must guarantee the existed applications’
timing constraints firstly. If the new client's timing constraints can be satisfied, it will be permitted to
execute. Extending scheduling service from static to dynamic has a basic rule: application might use fixed

620 电 子 科 技 大 学 学 报 第 30 卷

priority scheduling for part of the workload while the dynamic scheduling for only a subset of the
RTOS_Priority range[9]. Conventionally, applications whose timing properties can be determined before
run-time use off-line schedulability analysis to decide their schedule. Only those applications whose
timing properties can not be determined before run-time use dynamic scheduling. This is because the cost
of dynamic scheduling is expensive, especially for complex real-time system. To allow a new client
request to be handled on-line, the model proposed in EPIQ is used here and shown as Fig.1.

 Fig.1 Dynamic Client

As an example, Fig.1 shows a scenario with three clients, a server and the server's scheduling broker.
Client 1 and Client 2 can be validated and created corresponding schedule by off-line schedulability
analysis before run-time. At run-time, the schedule is then used by the server’s run-time scheduler to
schedule requests from Client 1 and Client 2. Compared with Client 1 and Client 2, before server’s
run-time scheduler schedules request from Client 3, the request must first go through scheduling broker
for schedulability analysis (i.e. admission test). The request from Client 3 can be processed as following
steps (1~5 in Fig.1):

1) Client 3 requests scheduling broker to make admission test;
2) Once receiving admission test request from Client 3, the scheduling broker make schedulability

analysis and then sends to clients the result whether being accepted or being refused;
3) If scheduling broker agrees to admit Client 3, it will notify server object to reserve resource;
4) If client has been admitted, it will begin to invoke remote operation;
5) The server returns the result.

3.2 The Cooperation of Client Scheduler and Server Scheduler
Fig.1 shows the run-time view of scheduling broker, but the details of admission test is ignored.

Compared with TAO and EPIQ, admission test proposed in the paper is accomplished by cooperation of
client scheduler and server scheduler. Fig.2 shows the details of cooperation among clients, client
scheduler, server scheduler and server.

Fig. 2 Details of Admission Test

ClientScheduler ServerScheduler

Server

Other

ServerSchedulers

…
Schedule_activity(“Ai”)
…

1 7 5

2
2

3

8

6

4 9

3

8

The process of scheduling a dynamic client’s activity Ai can be described as follows:
1) When activity Ai arrives, client scheduler will be called for admission test (1 in Fig.2);

Client1

Client2

Client3

Server

1

2
Scheduling

Broker

4 5
3

第 6 期 骆志刚 等: 一个实时 CORBAR 的动态调度服务模型 621

2) Client scheduler sends admission test request to each server scheduler (2 in Fig.2);
3) Each server scheduler makes admission test. If the system can meet on the timing constraints, the

server scheduler will indicate client scheduler that the activity is permitted to execute;
4) Otherwise, the activity will be refused. (3 in Fig. 2);
5) If the activity is permitted to execute, the server scheduler will configure the server and reserve

corresponding resources (4 in Fig.2);
6) Client scheduler collects all return results. If all admission test are successful, the activity Ai will

be schedule (5 in Fig.2), otherwise the activity Ai is refused, meanwhile do as step 8;
7) The activity Ai begins to invoke the remote operation(6 in Fig.2);
8) While activity Ai terminates, it requests client scheduler to release resource (7 in Fig.2);
9) Client Scheduler requests each server scheduler to release resource (8 in Fig.3), and then

terminates activity Ai;
10) Server scheduler release resource (9 in Fig.2).

As we know, a real-time CORBA client uses activity as scheduling unit. An activity Ai is a set of
remote methods: M={m1, m2, ⋅⋅⋅, mn}. To describe the cooperation process, several mappings are defined:
fclient(Ai), fserver(mi) and fobject(mi). fclient(Ai) represents client scheduler that is responsible for scheduling
activity Ai. fserver(mi)represents the server scheduler that is responsible for scheduling the object in which
method mi is, fobject(mi) represents the server object. Activity Ai can be described as follows:

Get information about activity Ai, such as M={ m1, m2, ⋅⋅⋅, mn};
Get ClientScheduler reference;
//Enter try region
admit= ClientScheduler−>trySchedule(⋅⋅⋅);
IF (admit==FALSE) THEN EXIT; ENDIF
//Exit from try region, then enter operation region
//Start to invoke remote methods
⋅⋅⋅
//End to invoke remote methods
//Exit from operation region, then enter exit region
ClientScheduler−>Release(⋅⋅⋅);
//Exit, terminate Ai

Activity Ai can be divided into three regions: Try region, Operation region and Exit region. In Try
region, client scheduler is called for admission test. If the test passes, activity Ai will enter Operation
region, otherwise, aborts the activity. In Operation region, several remote invocations will be invoked in
turn. In Exit region, resource will be released and activity Ai ends. It is necessary to point out that above
operations are transparent to developer, only except that the operation in Operation region are defined by
developer. For instance, a client can be written as follows:

ClientScheduler_var clt_sched= create scheduling service object;
object1_var obj1 = /* something */ //get and bind objects
object1_var obj1 = /* something */
BENGIN_ACTIVITY(clt_sched, “activity1”)
obj1 −> method1 () ;
obj2 −> method1 () ;
END_ACTIVITY
BENGIN_ACTIVITY(clt_sched, “activity2”)
obj1 −> method2 () ;
obj2 −> method2 () ;
END_ACTIVITY
From the above, it is clear that many operations are hidden by macro “BEGIN_ACTIVITY” and

“END_ACTIVITY”.
Client scheduler mainly provides two operations for the scheduling activity: operation

622 电 子 科 技 大 学 学 报 第 30 卷

“trySchedule” that makes admission test and operation “Release” that releases resource. They are
defined as follows:

trySchedule(⋅⋅⋅)
{
FOR each mj∈Mi { //request each Server Scheduler to make admission test

 ServerScheduler= fserver(mj)
 ServerScheduler->AdmissionTest(Req, ⋅⋅⋅);
}
ENDFOR
Collect return value R={r1, r2, ⋅⋅⋅, rn};
//If all return values are ACCETED, the test passes.
IF (∀ rj∈R, rj ==ACCEPTED) THEN return TRUE
ELSE //Otherwis, release the resource that have been reserved
 FOR each mj∈Mi {
 IF (rj== ACCEPTED) THEN {

//request ServerScheduler to release resource
 ServerScheduler= fserver(mj)

 ServerScheduler−>Terminate();}
 ENDIF
 ENDFOR
ENDIF
}
Release(⋅⋅⋅)
{
//request each Server Scheduler to release resource
FOR each mj∈Mi {

 ServerScheduler= fserver(mj)
ServerScheduler−>Terminate();}

ENDFOR
}
In fact, a two-phase protocol is used in operation trySchedule. Only all servers can accept the

corresponding request, then the activity will be scheduled, otherwise it will be given up.
Server scheduler mainly provides two operations: operation AdmissionTest that makes on-line

schedulability analysis and operation Terminate that releases resource. They are defined as follows:
AdmissionTest(Req, ⋅⋅⋅)
{
GET information from static repository and run-time repository;
make schedulability analysis;
IF Schedulable THEN {//If the server can accept it, it need to reserve corresponding resource
 Configure server and reserve resource;
 Store information about mi to runtime repository;
 Req.SendReply(ACCEPTED);
ELSE
 Req.SendReply(REJECTED);
ENDIF
}
Terminate()
{
//Release resource
cancel server configuration and resource reserved;

第 6 期 骆志刚 等: 一个实时 CORBAR 的动态调度服务模型 623

delete information about mi from run-time repository;
return;
}
The static repository and the run-time repository used in Server Scheduler will be defined in next

section.
3.3 Dynamic CORBA System

The scheduling services implemented in the research can support both static scheduling and
dynamic scheduling. A scheduler includes off-line scheduler and on-line scheduler. Based on the
dynamic scheduling service, dynamic and open real-time CORBA system can be implemented as Fig.3.

The real-time applications and the configuration information are analyzed by off-line scheduler,
and the corresponding static scheduling information is stored in static scheduling repository. The step is
necessary for those applications that need fixed priority scheduling. But for the dynamic clients, on-line
schedulability analysis should be done by on-line scheduler, in term of the information in dynamic
information repository and the static scheduling information. The tasks will be dispatched by OS
dispatcher according to the schedule that is created by scheduler.

Fig. 3 Components of Dynamic CORBA System

RT APP

off-line
scheduler

on-line
scheduler

run-time
system

Dispatcher clock

App layer

Sched Layer

OS Layer

configuration

static
repository

run-time
repository

run-time queue

request for
admission test

4 Conclusion
Introducing scheduling service into real-time CORBA helps to simplify development of real-time

applications. Scheduling service defined in real-time CORBA1.0 uses fixed priority scheduling methods,
which only can be applied to a “closed” CORBA application system. In the paper, a dynamic scheduling
service model is proposed, which can be applied to a dynamic, open real-time CORBA system. A
dynamic client is permitted to execute on a particular processing node with simple admission test. The
admission test is accomplished by cooperation of client scheduler and server scheduler.

References
1 Su Sen, Tang Xuefei, Liu Jinde. Object-oriented interoperability technology. Journal of University of Electronic

Science and Technology of China, 1998, 27(1): 90~94[苏 森, 唐雪飞,刘锦德. 面向对象的互操作技术.电子

科技大学学报, 1998, 27(1): 90~94]

2 Object Management Group. real-time CORBA joint revised submission. OMG Document orbos/99-02-12 ed.

1999

3 Schmidt D C, Levine D, Mungee S. The design of the TAO real-time object request broker. Computer

Communications Special Issue on Building Quality of Service into Distributed Systems, 1998, 21(4):69~86

624 电 子 科 技 大 学 学 报 第 30 卷

4 Wolfe V F, DiPippo L C. Real-time CORBA. Proceedings of the Real-Time Technology and Applications

Symposium, IEEE, 1997, 148-157

5 Feng W C, Syyid U, Liu W S. Providing for an open real-time CORBA. Proceedings of the IEEE Workshop on

Middleware for Distributed Real-Time Systems and Services, IEEE. 1997,135~141.

6 Gill C, Levine D, Schmidt D C, et al. The design and performance of a real-time CORBA scheduling service.

Real-time Systems, Kluwer, 2001, 20(2): 57~78

7 DiPippo L C, Wolfe V F. A scheduling service for a dynamic real-time CORBA system. in the proceedings of the

twenty-second annual international computer software and application conference, IEEE, 1998,189~196

8 Deng Z, Liu W S. Scheduling real-time applications in an open environment. Proceedingsof IEEE 18th Real-Time

Systems Symposium , IEEE, 1997, 308~319

9 Object Management Group. Dynamic scheduling initial submission. OMG Document orbos/99-10-06, 1999

10 Wang Zhiping, Xiong Guangze. Study of real-time scheduling algorithm. Journal of University of Electronic

Science and Technology of China, 2000, 29(2):205~208 [王志平, 熊光泽. 实时调度算法研究. 电子科技大学学

报, 2000, 29(2):205~209]

11 Luo Lei, Xiong Guangze. Research on worst case design of real-time multitasking applications. Journal of University

of Electronic Science and Technology of China, 1997, 26(1):74~77[罗 蕾, 熊光泽.实时多任务应用最坏情况设计

的研究. 电子科技大学学报, 1997, 26(1):74~77]

一个实时 CORBA 的动态调度服务模型∗

骆志刚∗∗ 谭 浩 刘锦德

(电子科技大学计算机科学与工程学院 成都 610054)

【摘要】 研究了实时 CORBA 调度服务的组成，并分析了它的局限性。利用客户调度器和服务器调度的

协作，实现了新增应用的接纳测试。基于这种接纳测试方法，提出了一个动态调度服务模型，克服了实时

CORBA 调度服务的局限性，进而扩展了实时 CORBA 的应用范围。利用该模型，实现了一个动态、开放的实

时 CORBA 系统。

关 键 词 实时 CORBA； 调度服务； 动态调度； 接纳测试

中图分类号 TP301.6

 2001 年 8 月 27 日收稿

∗ 国防科研基金资助项目

∗∗ 男 27 岁 博士生

