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Abstract  This paper proposes two models of discrete recurrent neural networks to study 

the problem of eigensubspace estimation for positive definite symmetric matrix.  The first 

model is a class of nonlinear neural networks. It is used for estimating the largest eigenvalue and 

one of its corresponding eigenvectors. The second model is a class of linear neural networks 

which estimates the eigensubspace corresponding to the largest eigenvalue. Dynamic properties 

of these two classes of discrete recurrent neural network models are studied and used for 

eigensubspace estimation. 
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【摘要】提出了用两种回复式离散神经网络模型研究正定对称矩阵的特征子空间估值问题：第1种模型

是非线性神经网络，用于计算最大特征值及其特征向量；第2种模型属于线性神经网络，用于计算相应于最大

特征值的特征子空间。详细研究了两种离散神经回路网络模型的动力学性质并用于特征子空间估值。 
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Given A, an n × n real positive definite symmetric matrix. We study in this paper the problem of 

estimating the eigensubspace corresponding to the largest eigenvalue of A. Eigensubspace estimation has a 

lot of applications, especially in adaptive signal processing. The problem of eigensubspace estimation has 

been widely studied in recent years. Many algorithms based on neural networks have been proposed, see 

Ref.[1~13] for examples. 

In Ref.[2~4，8~10，12], stochastic learning algorithms for eigensubspace estimation are proposed. 

These algorithms are expressed in the form of discrete iterative equations. The convergence of these 

algorithms are proven by studying the convergence properties of the associated deterministic ordinary 

differential equations of these stochastic algorithms. However, as pointed out in Ref.[11], these 
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approximations of stochastic algorithms by differential equations may not hold. Hence, the convergence of 

these stochastic learning algorithms could not be guaranteed.  

In Ref.[5, 6], the problem of estimating the eigensubspace corresponding to the smallest eigenvalue 

is recasted by a constraint optimization problem which is solved by using continuous neural networks 

model. Later, these results were extended to derive a Newton based adaptive algorithm in Ref.[7]. 

One of our observations is that most of the existing algorithms are too complicated and inefficient to 

be used in practice, especially when the dimensions of the input matrix is large. Moreover, continuous 

neural network models cannot be implemented easily using digital hardware and computer simulation. 

In this paper, we propose two simple discrete time recurrent neural networks to address the problem 

of estimating the eigensubspace corresponding to the largest eigenvalue of A. These networks converge 

very quickly with great precision. Since the networks are formulated as discrete time system, they favor 

computer simulations and have advantages over digital simulations of continuous time models. In addition, 

it can be easily implemented in digital hardware. These neural network models have very clear dynamic 

behaviors since we can solve the dynamic systems of the neural networks to obtain representations of the 

solutions. 

We organize our work as follows. Preliminaries and problem formulation are presented in Section 2. 

In Section 3, our nonlinear discrete time recurrent neural network model is presented. We discuss the 

representation of the solutions of the network and its convergence properties. In Section 4, we propose a 

linear discrete time neural network model for estimating the eigensubspace that corresponds to the largest 

eigenvalue. Section 5 concludes the paper. 

1  Preliminaries and Problem Formulation 

Let ),,2,1( nii L=λ  be all the eigenvalues of A with 1λ ≥ 2λ ≥⋯≥ nλ ＞0. Since A ia a 

symmetric matrix, there exists an orthogonal basis Si(i=1, 2,⋯, n) in R n and Si(i=1,2,⋯, n) are 

eigenvectors of A corresponding to the eigenvalues ),,2,1( nii L=λ . Let ),,2,1( mii L=σ  be all the 

distinct eigenvalues of A ordered with mσσσ >>> L21 . Let ),,2,1( mii L=β  be corresponding 

multiplicities of iσ   (i=1,2,⋯, m). We denote the algebraic sum of the multiplicities of iσσσ ,,, 21 L  

by ci(1≤i≤m), i.e. 
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1
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j
ji ∈∀= ∑
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β  

Obviously, we have cm = n. To ease the following discussion, we introduce also c0 = 0. It is easy to 

see that 

],1[        ],1[        1 mrcci rrri ∈+∈∀≡ −σλ  

and all S i(cr-1 +1≤i≤cr ) belong to the same eigensubspace is corresponding to the eigenvalues rσ . 

We denote the eigensubspace of an eigenvalue σ  by σV . 

For any nRX ∈ , since Si(i=1,2,⋯, n) forms a basis of R n, X can be uniquely expressed as X =  

∑
=

n

i
ii Sz

1

, where ),,2,1( niRz i L=∈ . 

The dimension of the eigensubspace 
1σV  is corresponding to the largest eigenvalue 1σ  is c1. The 

problem of eigensubspace estimation in this paper is to find c1 orthogonal vectors Wi(i=1,2,⋯,c1) in R n 

such that each of these vectors is approximately equal to an eigenvector corresponding to the largest 

eigenvalue 1σ . Then we have 
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To solve this problem of eigensubspace estimation, first we estimate the largest eigenvalue and one 

of its corresponding eigenvectors. Using this approximate largest eigenvalue we then estimate the 

eigensubspace corresponding to the largest eigenvalue. 

2  Largest Eigenvalue and Eigenvectors Estimation 

We now propose a discrete time recurrent nonlinear neural network model to estimate the largest 

eigenvalue and one of its corresponding eigenvectors.  

The proposed neural network consists of a single layer of n neurons interconnected with each other. 

The dynamics of this network can be described as follows: 

   
)()(
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kXkX

kAX
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=+                               (1) 

Where A is a real positive definite symmetric matrix of dimensions n×n, X(k) is a column vector of 

length n with X T (k) being its transpose. 

In this model, synchronous update of neurons is assumed. Each equilibrium point of the proposed 

network, if it is non-zero, is an eigenvector of the matrix A. 

Since A is positive definite, all its eigenvalues are positive. It is easy to verify that if X(0)≠0, then 

X(k)≠0 for all k≥0. Moreover, if X(0)≠0, then we have 

mσ ≤
)()(
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)1()1(
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T =++ ≤ 1σ     k≥0 

It shows that any solution of the network starting from a non-zero point in R n will stay between two 

concentric hyper-spheres with radiuses 1σ and mσ after the first iteration. 

Since the matrix A is symmetrical, A is associated with an orthogonal basis Si(i=1,2,⋯,n) in R n and 

each element of the basis is an eigenvector of A. Using this property, we can solve the nonlinear system of 

Eq.(1) to get a representation of the solutions. 

Theorem 1  For any non-zero vector nRX ∈)0( , if X(0)= ∑
=

n

i
ii Sz

1

)0( , the solution of Eq.(1)  

starting from X(0) is represented as 
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Proof  For any k≥0, let X(k) be the solution of Eq.(1) starting from X(0). Since Si(i=1,2,⋯,n) is an 

orthogonal basis of R n, X(k) can be represented as 
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where ),,2,1)(( nikz i L= are some real discrete functions. Then, it follows from Eq.(1) that  
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Since ),,2,1)((),,,2,1(0 nikzni ii LL ==>λ  have the same sign as zi (0) for all k≥0. It is easy to see 

that 0)( =kz i  for all k≥0 if and only if 0)0( =iz . Let I= =≠ izi i (,0)0(|{ 1,2,⋯, n)}. Then we have 
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    Solving this equation we get 
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    For each Ii ∈ , from Eq.(3) and Eq.(4), it follows that 

)1( +kzi = =








∑
=

))((

)(

)(
2

1

kzsign

kz

kz
i

n

j i

j

iλ
 

=
















∑
=

n

j i

j
k

i

j

ii

z

z

zsign

1

22

)0(

)0(

))0((

λ

λ

λ
 

∑
=

+

n

j
j

k
j

i
k

i

z

z

1

22

)1(

)0(

)0(

λ

λ
    k≥0 

    That is 

Ii

z

z
kz

n

j
j

k
j

i
k
i

i ∈=

∑
=

−

        

)0(

)0(
)(

1

2)1(2λ

λ
, k≥0                      (5) 

    Obviously, for each Ini −∈ },,2,1{ L , Eq.(5) still holds. This completes the proof . 

Theorem 2  Each solution of Eq.(1) starting from a non-zero point in R n converges to an 

eigenvector of A. 
Proof  Let X(0) be any of a non-zero point in Rn, then X(0) can be represented as X(0) =  

∑
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If l≤i≤cr, then ji λλ >  for all cr<j≤n and it follows that 
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If i≥cr+1, obviously 0)( →kz i  as 0→k . Then we have 



  第 4 期                      梁金明 等:  回复式离散神经网络的特征子空间估值 353  

∑
∑+=

+=

−

−

∈→
r

r

r
r

r

c

ci
ic

cj
j

ii VS

z

z
kX

1

1

21

1

        

)0(

)0(
)( σ

λ
, +∞→k  

This completes the proof. 

Theorem 3  The solution of Eq.(1) starting from X(0) converges to an eigenvector corresponding to 

the largest eigenvalue 1σ of A if and only if X(0) is not orthogonal to the eigensubspace 
1σV . 

Proof  Let  X(0)=∑
=

n

i
ii Sz

1

)0( . Since Si(i=1,2,⋯,c1) consists of a basis of the eigensubspace 
1σV ,  

X(0) is not orthogonal to the eigensubspace if and only if there exists an i(1≤i≤c1) such that 0)0( ≠iz . 

The result now follows from the proof of Theorem 2 and the proof is completed. 

3  Eigensubspace Estimation 

Consider the following simple linear discrete recurrent neural network model: 

X(k+1)= )(
1

1

kAX
σ

                                 (6) 

Where 1σ  is the largest eigenvalue of A. This network consists of a single layer of n neurons 

interconnecting with each other. Synchronous update of neurons is assumed. It is easy to see that if X(0)≠

0, then X(k)≠0 for all k≥0. 

Theorem 4  The set of equilibrium points of Eq.(6) is equal to the eigensubspace 
1σV . 

Proof  A vector ξ  is an equilibrium point of Eq.(6) and only if ξ =(1/ 1σ ) ξA . That is ξσξ 1=A , 

and so ξ is a equilibrium if and only if 
1σξ V∈ . The proof is completed. 

Theorem 5  For any X(0)∈R n , if X(0)=∑
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Since iλσ >1 (c1+1≤i≤n), it is easy to see that ( iλ / 1σ )k  +1 0)0( →iz  as +∞→k . Then →)(kX  
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Theorem 6  A solution )(kX  of Eq.(6) starting from X(0) converges to zero if and only if X(0) is 

orthogonal to 
1σV . 

Proof  By Theorem 5 we have ∑
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1σV . This completes the proof. 

Theorem 7  Let W∈
1σV  and X(0)⊥W, if the solution of Eq.(6) starting from X(0) does not 

converge to zero, it must converge to an eigenvector in 
1σV  and this eigenvector is still orthogonal to W. 

Proof  Suppose X(0)= i
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completed. 

In above, we have got an approximate largest eigenvalue 1σ  but it is not really the largest 

eigenvalue 1σ . Though 1σ  can be close to 1σ  in arbitrary precision if the error parameter goes to zero, 

we still need to know what will happen if we replace 1σ  by 1σ  in the network described by Eq.(6). To 

achieve this aim, let us consider the linear neural network  
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Theorem 8  If 2111 σσσσ −<− , for any non-zero vector X(0)∈R n , the solution X(k) of Eq.(6) 

and the solution )(kX  of Eq.(7) starting from the same initial value X(0) satisfy 
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where N(·) is the normalization of ·. 
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Hence, 0))(())(( lim =−
+∞→

kXNkXN
k

. This completes the proof. 

The normalization in Theorem 8 is important. Since solutions of Eq.(7) may not converge, we use the 

normalization of the solutions instead. This theorem allows us to replace 1σ  by 1σ  in Eq.(6) during 

computation. 

4  Conclusion 

In this paper, we proposed some discrete recurrent neural network models to study the problem of 

eigensubspace estimation for real positive definite symmetric matrix. Dynamic properties of these 

networks were studied in detail. 
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