
 第 32卷 第 6期 电 子 科 技 大 学 学 报 Vol.32 No.6
 2003年 12月 Journal of UEST of China Dec. 2003

An Efficient Disk Queue I/O Mechanism

Wei Qingsong Lu Xianliang Ren Liyong Zhou Xu

(School of Computer Science and Engineering, UEST of China Chengdu 610054)

Abstract The storage management overload and read-write performance of traditional disk queue

are analyzed. To solve the problem that disk queue I/O is the primary performance bottleneck in

messaging server, an efficient disk queue I/O mechanism called FlashQ is proposed. FlashQ utilizes

pre-assigned continuous disk blocks to act as disk queue and organizes data in compact layout and adopts

the Lazy Write and the Ahead Read polices to elevate the performance of read-write. Experiment shows

that performance of the FlashQ is much better than that of traditional disk queue.

Key words messaging server; disk queue; lazy write; ahead read

一种高效的磁盘队列I/O机制*

魏青松** 卢显良 任立勇 周 旭
(电子科技大学计算机科学与工程学院 成都 610054)

【摘要】分析了传统磁盘队列的存储管理开销和读写性能，针对磁盘队列I/O已成为影响消息服务器性能的首

要瓶颈，提出了一种高效磁盘队列I/O机制—FlashQ。FlashQ采用物理上连续的磁盘块作为磁盘队列，以紧凑方式

组织数据，采用延迟写策略和预先读策略提高读写性能。实验表明，FlashQ的性能比传统磁盘队列好。

关 键 词 消息服务器; 磁盘队列; 延迟写; 预先读

中图分类号 TP316.81 文献标识码 A

The explosive growth of messaging traffic (Email and Short Messaging Service) has put tremendous pressures

on messaging system to be super-fast and reliable. Normal Mail Transfer Agent(MTA) handles 40～50 messages/s

per server because large number of small file writes causes disk I/O the primary bottleneck in messaging system.

Based on SMTP protocol, messages must be saved persistently to disk before acknowledging the sender. Most

email systems store message in form of a message per separate file, which brings heavy overload of disk

management and file operation. In order to reduce management overload, Qmail introduces Hash directory and files

are written in the directory in a round robin manner. Hash directory reduces file seek times efficiently, but it has not

changed the storage manner of one message per file at all. The heavy overload of disk management still exists. On

the other hand, the storage manner of a message per file causes a large amount of disk fragments.

This paper presents an efficient disk queue I/O mechanism called FlashQ. The FlashQ utilizes pre-assigned

continuous disk blocks to serve as disk queue to reduce file management overload, in which adjacent messages are

stored in adjacent disk block. The FlashQ adopts Lazy Write(LW) policy to accumulate multiple messages in a

 Received on March 21, 2003

2003年3月21日收稿
 *The project is supported by Electronic Information Industry Fund, No.: [2000]1277
 信息产业部电子工业生产发展基金资助项目, 编号: [2000]1277
 ** 男 31岁 博士生 主要从事分布式系统、网络存储、操作系统、计算机网络方面的研究

 电 子 科 技 大 学 学 报 第 32卷

688

large buffer and save them into the disk queue in one large write. And multiple adjacent messages are fetched into

buffer in one large read by Ahead Read(AR) policy. The LW and AR policies take full advantage of the disk

bandwidth. In addition, FlashQ can reduce disk fragments efficiently.

1 File System Characteristics

 In disk system, random disk access time Taccess is composed of three parts as

transferrotateseekaccess TTTT ++= (1)

where Tseek denotes disk seek time, Trotate denotes rotational latency, Ttransfer denotes data transfer time which is the

only effective time among three parts and occupies little portion of Taccess. Tseek is about half of Taccess for small file.

The characteristic of the modern disk drivers is that the relationship between seek latency and seek distance is

nonlinear, which results in that reading or writing several 4 Kb or 8 Kb disk blocks costs a relatively small amount

more than reading or writing only one. However, although file systems have been very successful at exploiting the

disk bandwidth for large file, they have failed to do so for small file activity [1].

Small file can not obtain high performance because it can not make full use of the disk bandwidth. On the

other hand, with the run of the file system, the file system gets increasingly fragmented. A fragmented file system

stores a large part of its file into non-adjacent blocks. And reading and writing data from and to non-adjacent blocks

causes longer seek times and can severely reduce file system throughput.

2 Conventional Disk Queue I/O Overload

Most available email systems store each message in a separate file as Fig.1 shows. There are two traditional

storage management approaches of the disk queue: files reside in a single directory hierarchy or in a multiple hash

directory hierarchy. The first approach obtains low efficiency because traditional UNIX directory lookup takes time

linear with the directory depth. The second way by which files are written in the Hash directory in a round robin

manner reduces file seek times efficiently.

In the initial stage of FSmail (a Fast and Secure Mail Server developed by us and its software copyright

register number is 2003SR0075) project, we exploit the second approach as disk queue which stores each message

object per file. To get a better understanding of real file storage organizations, we construct a small utility to scan

the traffic of FSmail server. Due to the characteristics of email traffic, 85% of referenced message objects are

smaller than 8 Kb. Fig.2 illustrates this by showing the distribution of sizes of message objects. Storing each

message in a file will cause a large amount of small files, which increases storage management overload. In

addition, small file can not perform well in current file system.

Msg 1

Msg 2

Msg 3

Small file writes

256 512 1 024 4 096 8 192 16 384

100

80

60

40

20

0

F
/ (
％

)

S / bytes
 Fig.1 Traditional disk queue Fig.2 Distribution of message size

We test our FSmail server using the SPECMAIL 2000 under 50 000 users in the 100 Mb/s LAN. Tab.1 reports

the result. We can see that the process time of the commands of SMTP DATA and DELIVER interacting with disk

queue is much more than that of the other commands. The command of SMTP DATA gets a message from client,

 第 6期 魏青松 等: 一种高效的磁盘队列 I/O机制

689

creates a new file queue and writes the message into the file, which involves network I/O, file creation and file

writing. The command of DELIVER opens the file storing a message, reads and delivers the message, deletes the

file after the message is delivered successfully, which involves file opening, file reading and file deletion.

Tab. 1 Messaging server command process time

SMTP Command Helo MAIL FROM RCPT TO DATA DELIVER

Process Time/ms 8.40 5.37 4.47 25.12 19.80

To understand the disk queue I/O in detail, we test the overload of the disk queue based on our FSmail server

which stores a message in a separate file. The result shown in Fig.3 tells us that the overload of disk I/O is much

higher than that of network I/O and file creation and writing

occupy a large portion of the overload of the disk queue I/O.

From the above experiment and analysis, the disk queue

exploiting Hash directory still presents the following shortages.

First, although the Hash directory reduces file seek times

efficiently, it has not changed the storage manner of one message

one file at all. The overload of disk management still exists.

Second, with the run of messaging server, it causes a large

amount of disk fragments which severely decrease the

performance of small file reading and writing.

So optimizing storage management of the disk queue

according to the I/O characteristics of the messaging system will reduce the management overload and improve the

performance of message reading and writing, which will boost up the performance of the messaging system.

3 The Design of FlashQ

3.1 Basic Idea

Considering the I/O character of messaging server, we present an efficient disk queue I/O mechanism called

FlashQ whose basic structure is as Fig.4 shows. The FlashQ optimizes the disk queue at the following three

respects:

1) Pre-creating a large continuous disk space as

disk queue to reduce file management overload of file

creation and file deletion[2].

2) Introducing LW policy to reduce disk machine

movement overload and make full use of disk

bandwidth by gathering multiple messages in a big

buffer and saving them to disk queue in one large

write[3].

3) Exploiting AR policy to reduce the times of reading and make full use of disk bandwidth by reading

multiple continuous messages in one big read operation.

3.2 FlashQ Disk Layout

In traditional disk queue such as Qmail, message head and message context are saved in two separate files

which are organized by current file system and always scatter in discontinuous disk blocks.

The FlashQ pre-occupies a large continuous disk space from a NAS or SAN as disk queue at initialization.

The FlashQ is organized in compact storage management which stores the message head and message context in

continuous disk blocks as a whole data object and saves adjacent message objects in continuous disk blocks [4].

0

20

40

60

80

100

120

140

512 1 024 2 048 4 096 8 192
S /Bytes

T
/u

s

Net Read File Create File Open

File Write File Read File Delete

Fig.3 Conventional disk queue I/O overload

Msg 1

Msg 2

Msg n
.
..

Msg n ⋯ Msg 2 Msg 1

Write

1 preassigned large buffer

Fig.4 Flash Queue structure

T
/ µ

s

 电 子 科 技 大 学 学 报 第 32卷

690

Fig.5 shows the disk layouts that occur in the traditional disk queue and the FlashQ after storing three messages.

To keep the compact disk layout, the FlashQ copies the delivered failing message to the deferral queue and

sets the delete flag on

3.3 Message Index Node

To improve the read performance, the FlashQ keeps

a Message Index Node (MIN) table in memory, which

indexes the messages waiting for being delivered. The

MIN in memory including message ID, offset, the MIN

size and message context size is a subset of the MIN in

the disk, which provides quick location of the message

by the map between message ID and message location.

According to the character of First Come First Serve, the MIN table is arranged in form of queue in memory.

When a message comes, the FlashQ allocates a new MIN in memory, fills in all the fields of the MIN and appends

the MIN into the MIN table. When a message is delivered successfully, the FlashQ deletes and frees the MIN.

In case that something happens to the server and it goes down, we should be able to restart and read MIN table

from the disk queue on the NAS or SAN. Queue recovery should take very short time, typically less than 50 ms.

3.4 FlashQ Writing

The FlashQ adopts LW policy to reduce the times of synchronized write and improve the message writing

performance [5].

The SMTP front-end doesn’t use any local storage for incoming messages. The SMTP front-end receives

messages from client and performs some processing in a process pipeline such as anti-virus, anti-spamming and

then sends it to the Queue Server. The SMTP front-end waits for the Queue Server to write this mail to the disk.

The Queue Server accumulates multiple messages in a large buffer. Once the buffer is full or a certain time period

has elapsed, the Queue server saves all the messages in the buffer into the disk queue in one large write and sends a

response to the SMTP front-ends. The SMTP front-end acknowledges the sender of the message that the message

has been stored and the client does not fell obvious latency. From this point, our MTA will take all the

responsibility to route this message to its destination address.

Thus, the LW policy insures the impact disk layout of the FlashQ by putting multiple adjacent message objects

in continuous disk blocks. It makes full use of disk bandwidth and advances the write performance by reducing the

disk seek and rotation latency.

3.5 FlashQ Reading

Because the message transferring abides the principle of First Come First Serve, adjacent message objects can

are placed in continuous disks block and it is possible to equip large cheap memory in special large scale messaging

server, the FlashQ uses AR policy to boost up read performance [6].

When reading message, the AR policy reads not only the current message object from disk but also its next

multiple messages objects stored in adjacent disk blocks in one large read. The buffer size and the MIN table in

memory decide how many messages to be read one time.

As a result, the AR policy improves the read performance and makes full use of the disk bandwidth by

lessening the disk machine movement cost which elevates the speed of message delivery.

3.6 FlashQ Deletion

As the message being delivered successfully, the traditional one message per file disk queue deletes the file

storing that message, which not only greatly aggravates the overload of disk I/O but also produces a mass of disk

fragments which accelerates the file system fragmented. And the fragmented file system reduces the file read

performance to a great extent.

DiskFlashQ

Disk

Message Index Node Message Text

FlashQ

Traditional disk queue

Fig.5 Disk layout of the FlashQ

 第 6期 魏青松 等: 一种高效的磁盘队列 I/O机制

691

When a message has been delivered, the FlashQ deletes the MIN of the message in the memory and sets on

the deletion flag of the message in disk by one byte writing, which greatly decreases the overload of disk I/O and

disk fragments.

4 Experiment Results

We test the performance of our FSmail server with the FlashQ using the SPECMAIL 2000 under 50 000 users

in the 100 Mb/s LAN. Tab.2 shows the comparison of performance between the traditional disk queue and the

FlashQ. From the Tab.2, we can see that the process time of the commands of SMTP DATA and DELIVER with

the FlashQ decreases greatly.

Tab.2 Messaging server performance under flashQ and traditional hash queue

SMTP Command Helo MAIL FROM RCPT TO DATA DELIVER

Process Time(Hash Queue)/ms 8.40 5.37 4.47 25.12 19.80

Process Time(FlashQ)/ms 7.41 4.85 4.50 10.11 7.67

 Going deep into the commands of the SMTP DATA

and the DELIVER, we test the performance of message

reading and writing with FlashQ. Fig.6 plots the read and

write performance of the FlashQ in comparison to the

traditional disk queue. From Fig.6, we can see that the

read and write performance of the FlashQ is much better
than that of traditional disk queue.

5 Conclusions

In this paper, we analyses and finds that the disk

contention is the chief bottleneck of the traditional mail system. According to the I/O characteristic of messaging

system, we design and implement an efficient disk queue I/O mechanism called FlashQ. The FlashQ achieves high

efficiency by reducing file management overload and adopting comfortable rdad write policy to make full

advantage of the disk bandwidth.

References

[1] Gregory R G, Kaashoek M F. Embedded Inodes and Explicit Grouping:Exploiting Disk BandWidth for Small Files[C].

Proceedings of the 1997 USENIX Annual Technical Conference Anaheim, CA, 1997. 1-17

[2] Maltzahn C, Kathy J R. Reducing the Disk I/O of Web Proxy Server Caches[C]. Proceedings of the 1999 USENIX

Annual Technical Conference, Califorma, USA, 1999. 225-238

[3] Evangelos P M, Manolis G H K, et al. Secondary Storage Management for Web Proxies[C]. Proc. 2nd USENIX

Symposium on Internet Technologies & Systems, Colorado, USA, 1999. 93-104

[4] Rosenblum M, John K O. The design and implementation of a log-structured file system[J]. ACM Transaction on

Computer Systems,1992, 10(1):26-52

[5] McCormick M, Ledlie J T. A Fast File System for Caching Web Objects[C]. First Annual Symposium on Operating

Systems Design, Implementation, and Evaluation, California, USA, 2000. 21-27

[6] McKusick K M, William N J, Samual J L, et al. A fast file system for UNIX[J]. ACM Transaction on Computer

Systems, 1984, 2(3): 181-197

编 辑 王 燕

