32 6 Vol.32 No.6
2003 12 Journal of UEST of China Dec. 2003

An Efficient Disk Queue |/O Mechanism

Wei Qingsong Lu Xianliang Ren Liyong Zhou Xu
(School of Computer Science and Engineering, UEST of China Chengdu 610054)

Abstract The storage management overload and read-write performance of traditional disk queue
are analyzed. To solve the problem that disk queue I/O is the primary performance bottleneck in
messaging server, an efficient disk queue 1/0O mechanism called FlashQ is proposed. FlashQ utilizes
pre-assigned continuous disk blocks to act as disk queue and organizes data in compact layout and adopts
the Lazy Write and the Ahead Read polices to elevate the performance of read-write. Experiment shows
that performance of the FlashQ is much better than that of traditional disk queue.

Key words messaging server; disk queue; lazy write; ahead read

/0

*%

(610054)

110
/0 —FashQ FlashQ
FlashQ

TP316.81 A

The explosive growth of messaging traffic (Email and Short Messaging Service) has put tremendous pressures
on messaging system to be super-fast and reliable. Norma Mail Transfer Agent(MTA) handles 40 50 messages/s
per server because large number of small file writes causes disk /O the primary bottleneck in messaging system.

Based on SMTP protocol, messages must be saved persistently to disk before acknowledging the sender. Most
email systems store message in form of a message per separate file, which brings heavy overload of disk
management and file operation. In order to reduce management overload, Qmail introduces Hash directory and files
are written in the directory in a round robin manner. Hash directory reduces file seek times efficiently, but it has not
changed the storage manner of one message per file at all. The heavy overload of disk management till exists. On
the other hand, the storage manner of a message per file causes a large amount of disk fragments.

This paper presents an efficient disk queue 1/0 mechanism called FlashQ. The FlashQ utilizes pre-assigned
continuous disk blocks to serve as disk queue to reduce file management overload, in which adjacent messages are
stored in adjacent disk block. The FlashQ adopts Lazy Write(LW) policy to accumulate multiple messages in a

Received on March 21, 2003
2003 3 21
*The project is supported by Electronic Information Industry Fund, No.: [2000]1277
:[200011277
* % 31

688 32

large buffer and save them into the disk queue in one large write. And multiple adjacent messages are fetched into
buffer in one large read by Ahead Read(AR) policy. The LW and AR poalicies take full advantage of the disk
bandwidth. In addition, FlashQ can reduce disk fragments efficiently.

1 FileSystem Characteristics

In disk system, random disk access time Tagcess IS cOMposed of three parts as
Tacess = T + Trotte + Tianster @D
where Tgeek denotes disk seek time, Troae denotes rotationa latency, Tianser denotes data transfer time which is the
only effective time among three parts and occupies little portion of Taccess: Tseek 1S @out half of Taccess fOr small file.

The characteristic of the modern disk drivers is that the relationship between seek latency and seek distance is
nonlinear, which results in that reading or writing several 4 Kb or 8 Kb disk blocks costs a relatively small amount
more than reading or writing only one. However, although file systems have been very successful at exploiting the
disk bandwidth for large file, they have failed to do so for small file activity ™.

Small file can not obtain high performance because it can not make full use of the disk bandwidth. On the
other hand, with the run of the file system, the file system gets increasingly fragmented. A fragmented file system
stores alarge part of its file into non-adjacent blocks. And reading and writing data from and to non-adjacent blocks
causes longer seek times and can severely reduce file system throughput.

2 Conventional Disk Queue /O Overload

Most available email systems store each message in a separate file as Fig.1 shows. There are two traditional
storage management approaches of the disk queue: files reside in a single directory hierarchy or in a multiple hash
directory hierarchy. The first approach obtains low efficiency because traditional UNIX directory lookup takes time
linear with the directory depth. The second way by which files are written in the Hash directory in a round robin
manner reduces file seek times efficiently.

In the initial stage of FSmail (a Fast and Secure Mail Server developed by us and its software copyright
register number is 2003SR0075) project, we exploit the second approach as disk queue which stores each message
object per file. To get a better understanding of real file storage organizations, we construct a small utility to scan
the traffic of FSmail server. Due to the characteristics of email traffic, 85% of referenced message objects are
smaler than 8 Kb. Fig.2 illustrates this by showing the distribution of sizes of message objects. Storing each
message in a file will cause a large amount of small files, which increases storage management overload. In
addition, small file can not perform well in current file system.

100

80
Small file writes

60 [

FI()

40
20

0

256 512 1024 4 096 8192 16 384
S/ bytes

Fig.1 Traditiona disk queue Fg.2 Digtribution of message size
We test our FSmail server using the SPECMAIL 2000 under 50 000 usersin the 100 Mb/s LAN. Tab.1 reports

the result. We can see that the process time of the commands of SMTP DATA and DELIVER interacting with disk
gueue is much more than that of the other commands. The command of SMTP DATA gets a message from client,

6 : 110 689

creates a new file queue and writes the message into the file, which involves network 1/0, file creation and file
writing. The command of DELIVER opens the file storing a message, reads and delivers the message, deletes the
file after the message is delivered successfully, which involves file opening, file reading and file deletion.

Tab.1 Messaging server command processtime

SMTP Command Helo MAIL FROM RCPT TO DATA DELIVER
Process Time/ms 8.40 537 447 25.12 19.80

To understand the disk queue 1/0O in detail, we test the overload of the disk queue based on our FSmail server
which stores a message in a separate file. The result shown in Fig.3 tells us that the overload of disk I/O is much
higher than that of network I/O and file creation and writing

occupy alarge portion of the overload of the disk queue /0. 140 {ONetRead DFileCredte QFileOpen L
From the above experiment and analysis, the disk queue 120 | [BFleWle BFcRed DFniDdae

exploiting Hash directory still presents the following shortages. glgg

First, although the Hash directory reduces file seek times = o |

efficiently, it has not changed the storage manner of one message 40 b

one file a all. The overload of disk management till exists. 20 -I' Mﬂ

Second, with the run of messaging server, it causes a large 0

512 1024 2048 409 8192

amount of disk fragments which severely decrease the S/Bytes

performance of small file reading and writing.

So optimizing storage management of the disk queue
according to the I/O characteristics of the messaging system will reduce the management overload and improve the
performance of message reading and writing, which will boost up the performance of the messaging system.

3 TheDesign of FlashQ

Fig.3 Conventiona disk queue I/O overload

3.1 Basicldea

Considering the 1/0O character of messaging server, we present an efficient disk queue I/O mechanism called
FlashQ whose basic structure is as Fig.4 shows. The FlashQ optimizes the disk queue at the following three
respects:

1) Pre-creating a large continuous disk space as
disk queue to reduce file management overload of file Write

Msg 1

creation and file deletion?. | M2 | wson| | ws2| ws

2) Introducing LW policy to reduce disk machine - 1 preassigned large buffer
movement overload and make full use of disk | Msn
bandwidth by gathering multiple messages in a hig Fig.4 Flash Queue structure
buffer and saving them to disk queue in one large
write?,

3) Exploiting AR policy to reduce the times of reading and make full use of disk bandwidth by reading
multiple continuous messages in one big read operation.
3.2 FlashQ Disk Layout

In traditional disk queue such as Qmail, message head and message context are saved in two separate files
which are organized by current file system and always scatter in discontinuous disk blocks.

The FlashQ pre-occupies a large continuous disk space from a NAS or SAN as disk queue at initialization.
The FHashQ is organized in compact storage management which stores the message head and message context in
continuous disk blocks as awhole data object and saves adjacent message objects in continuous disk blocks .

690 32

Fig.5 shows the disk layouts that occur in the traditional disk queue and the FlashQ after storing three messages.

To keep the compact disk layout, the FlashQ copies the delivered failing message to the deferral queue and
sets the delete flag on
| |W| | | |¢| H ||| Disk| 3.3 Message Index Node

To improve the read performance, the FlashQ keeps
a Message Index Node (MIN) table in memory, which
| ||_|J’| l?'| ||_‘L| — indexes the messages waiting for being delivered. The
o MIN in memory including message ID, offset, the MIN
|:| Message Index Node |:| Message Text size and message context size is a subset of the MIN in
the disk, which provides quick location of the message

by the map between message ID and message location.

According to the character of First Come First Serve, the MIN table is arranged in form of queue in memory.
When a message comes, the FlashQ allocates a new MIN in memory, fills in al the fields of the MIN and appends
the MIN into the MIN table. When a message is delivered successfully, the FlashQ deletes and frees the MIN.

In case that something happens to the server and it goes down, we should be able to restart and read MIN table
from the disk queue on the NAS or SAN. Queue recovery should take very short time, typically less than 50 ms.
3.4 FlashQ Writing

The FlashQ adopts LW policy to reduce the times of synchronized write and improve the message writing
performance 1.

The SMTP front-end doesn’ t use any loca storage for incoming messages. The SMTP front-end receives
messages from client and performs some processing in a process pipeline such as anti-virus, anti-spamming and
then sends it to the Queue Server. The SMTP front-end waits for the Queue Server to write this mail to the disk.
The Queue Server accumulates multiple messages in a large buffer. Once the buffer is full or a certain time period
has elapsed, the Queue server saves all the messages in the buffer into the disk queue in one large write and sends a
response to the SMTP front-ends. The SMTP front-end acknowledges the sender of the message that the message
has been stored and the client does not fell obvious latency. From this point, our MTA will take al the
responsibility to route this message to its destination address.

Thus, the LW policy insures the impact disk layout of the FlashQ by putting multiple adjacent message objects
in continuous disk blocks. It makes full use of disk bandwidth and advances the write performance by reducing the
disk seek and rotation latency.

3.5 FlashQ Reading

Because the message transferring abides the principle of First Come First Serve, adjacent message objects can
are placed in continuous disks block and it is possible to equip large cheap memory in special large scale messaging
server, the FlashQ uses AR policy to boost up read performance 1.

When reading message, the AR policy reads not only the current message object from disk but aso its next
multiple messages objects stored in adjacent disk blocks in one large read. The buffer size and the MIN table in
memory decide how many messages to be read one time.

As a result, the AR policy improves the read performance and makes full use of the disk bandwidth by
lessening the disk machine movement cost which elevates the speed of message delivery.

3.6 FlashQ Deletion

As the message being delivered successfully, the traditional one message per file disk queue deletes the file
storing that message, which not only greatly aggravates the overload of disk 1/O but also produces a mass of disk
fragments which accelerates the file system fragmented. And the fragmented file system reduces the file read
performance to a great extent.

Traditional disk queue

FlashQ | Disk |

Fig.5 Disk layout of the FlashQ

6 : 110 691

When a message has been delivered, the FlashQ deletes the MIN of the message in the memory and sets on
the deletion flag of the message in disk by one byte writing, which greatly decreases the overload of disk 1/0 and
disk fragments.

4 Experiment Results

We test the performance of our FSmail server with the FlashQ using the SPECMAIL 2000 under 50 000 users
in the 100 Mb/s LAN. Tah.2 shows the comparison of performance between the traditional disk queue and the
FlashQ. From the Tab.2, we can see that the process time of the commands of SMTP DATA and DELIVER with
the FlashQ decreases greetly.

Tab.2 Messaging server performance under flashQ and traditional hash queue

SMTP Command Helo MAIL FROM RCPT TO DATA DELIVER
Process Time(Hash Queue)/ms 8.40 5.37 447 25.12 19.80
Process Time(FlashQ)/ms 7.41 4.85 450 1011 7.67

Going deep into the commands of the SMTP DATA
and the DELIVER, we test the performance of message
reading and writing with FlashQ. Fig.6 plots the read and

Hash Queve write & FlashO write
L | B Hash Queve read & FlashQ read

140
120

i [/

write performance of the FlashQ in comparison to the §~l(:()) ?
traditional disk queue. From Fig.6, we can see that the “ et ?
read and write performance of the FlashQ is much better 40t ,4
than that of traciltional disk queue. 20 78

O s 1024 2048 4096 8192
5 Conclusions §/bytes

Fig. 6 /O performance comparison of FlashQ with

In this paper, we analyses and finds that the disk traditional Hash Queue

contention is the chief bottleneck of the traditional mail system. According to the I/O characteristic of messaging
system, we design and implement an efficient disk queue I/O mechanism called FlashQ. The FlashQ achieves high
efficiency by reducing file management overload and adopting comfortable rdad write policy to make full
advantage of the disk bandwidth.

References

[1]Gregory R G, Kaashoek M F. Embedded |nodes and Explicit Grouping:Exploiting Disk BandWidth for Small FilegC].
Proceedings of the 1997 USENIX Annua Technica Conference Anaheim, CA, 1997. 1-17

[2] Mdtzahn C, Kathy J R. Reducing the Disk 1/0 of Web Proxy Server CacheqC]. Proceedings of the 1999 USENIX
Annual Technical Conference, Califorma, USA, 1999, 225-238

[3] Evangelos P M, Manolis G H K, et al. Secondary Storage Management for Web ProxiegC]. Proc. 2nd USENIX
Symposium on Internet Technologies & Systems, Colorado, USA, 1999. 93-104

[4] Rosenblum M, John K O. The design and implementation of a log-structured file system[J]. ACM Transaction on
Computer Systems, 1992, 10(1):26-52

[5] McCormick M, Ledlie JT. A Fast File System for Caching Web Objectg[C]. First Annual Symposium on Operating
Systems Design, Implementation, and Evaluation, Caifornia, USA, 2000. 21-27

[6] McKusick K M, William N J, Samua JL, et al. A fast file system for UNIX[J]. ACM Transaction on Computer
Systems, 1984, 2(3): 181-197

