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Abstract  With the improvement of high temperature superconducting (HTS) material technology, HTS 

linear motors (LM) which are built using HTS bulks and HTS tapes have been realized. In this paper, different 
types of the developed HTS LMs are summarized with their structure models. The electromagnetic characteristics 
of these HTS LMs are studied with the results obtained by using magnetic field finite element method. Superiorities 
of the HTS LM technology are also verified with its applications in transportation field such as maglev and 
electromagnetic aircraft launcher.  
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【摘要】随着高温超导材料制备技术的进步，应用高温超导块材和带材研制开发直线电动机已具备了核心技术基础。该

文总结了已研制出的高温超导直线电动机类型，并建立了它们的结构模型。应用磁场有限元方法，研究了这些不同类型高温

超导直线电动机的电磁特性，并设计了实际模型装置进行了试验验证。通过高温超导直线电动机在磁悬浮车及电磁飞机弹射

器等交通运输领域中的应用分析，验证了高温超导直线电动机技术在实际应用当中的潜在优越性。 
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The development of high temperature 
superconducting (HTS) materials has progressed more 
than twenty years, and the forms of HTS materials are 
mainly the HTS bulks, HTS tapes, and HTS films. In 
strong current application fields, HTS bulks and tapes 
have been commonly and widely applied into electric 
power, traffic, magnet etc. due to their excellent 
electromagnetic performance.  

The HTS bulks with trapped magnetic field above 
2.3 T in 77 K and 17 T in 29 K have been reported[1-2], 
which are substantially higher than conventional 
permanent magnet (PM). The applications of HTS bulk 
magnets into motors, flywheel energy storage devices 
and magnetic levi ta t ion systems have been 
initialized[3-5]. The secondary generation (2G) HTS 

tape, namely YBCO coated conductor, has well been 
developed after the first generation (1G) BSCCO/Ag 
tape manufacturing technologies being reaching 
maturity. Now, the critical current density of 1G HTS 
Bi-2223 tapes and 2G YBCO coated conductor have 
reached over 3×105 A/cm2 (77 K, 0 T) and  
3×106 A/cm2 (77 K, 0 T), respectively[6-7]. 

With the performance progress of HTS bulks and 
HTS tapes, HTS linear motors (LM) using HTS 
materials have been developed with advanced 
characteristics and performances, which are suitable 
for a wide range of applications.  

In this work, three different types of HTS LM 
theory models will be analyzed with their technologies 
presented in details. The time-step finite element 
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method (FEM) is applied to solve these HTS LM 
models, and their electromagnetic characteristics are 
presented. The HTS LM application technologies used 
such as linear actuator and electromagnetic aircraft 
launcher are verified preliminarily with their 
application model built. 

1  Model of HTS LSM 
The linear motor mainly includes linear induction 

motor (LIM), permanent magnet linear synchronous 
motor (PMLSM) and linear reluctance motor (LRM). 
The HTS linear motors developed recently are mainly 
the linear synchronous motors (LSMs). Based on the 
different application models of HTS materials, the 
HTS LSMs are divided into the following types: 

(1) HTS bulk magnet LSM with field-cooled (FC) 
HTS bulks magnet as secondary[8-11];  

(2) HTS LSM with zero-field-cooled (ZFC) HTS 
bulk as secondary[12-13]; 

(3) HTS LSM with primary windings using HTS 
coils[14]; 

(4) Hybrid HTS LSM can be realized by 
combining (1) and (3) or (2) and (3).  

Based on their structures, the HTS LSM can also 
be divided into single-sided primary LSM[10-11,14-15] and 
double-sided primary LSM[8-9,12-13]. The conventional 
LM integrated with HTS levitation systems is an 
important LM application with HTS technology, 
however it is only recognized as combined HTS LM 
applications here. 
1.1  HTS LSM with FC HTS Bulk Magnets 

A HTS bulk can trap magnetic field by FC 
magnetization with steady magnetic field or pulse 
magnetic field, as the schemes of a D.C. magnet and a 
pulse power supply are shown in Fig. 1. After being 
magnetized, the HTS bulk magnets are installed into 
the secondary of LSM with alternating poles of N and 
S in longitudinal direction, and same poles in 
transverse direction to achieve enough width. There are 
two types of motor structure with single-sided and 
double-sided developed as shown in Fig. 2a and  
Fig. 2b. For the single-sided HTS LSM, the back-iron 
may be used to improve the electromagnetic force. For 
the double-sided HTS-LSM, the magnetic attractive 
force between the primary iron-core and HTS bulk 

magnet secondary can be cancelled. 
The sandpile model in combination with the 

Biot-Savart law can be used to build HTS bulk magnet 
numerical model[16], and the magnetic flux density B 
distribution of bulk magnet can be calculated based on 
it.  

The fundamental wave electromagnetic thrust 
force Fem generated by HTS LSM is: 

1
em SC

3 π
2
c Np N k IF ψ
τ

=              (1) 

where SCψ  is the magnetic flux linkage one coil 
applied by one pole-pairs of HTS bulk magnets, Nc the 
turns of phase winding, kN the winding factor, I1 the 
phase current, τ the pole pitch, p the pole-pairs. 
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Fig. 1  FC magnetizations 
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b. Double-sided HTS bulk magnet LSM 

Fig. 2  HTS LSM with FC HTS bulk magnets 
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1.2  HTS LSM with ZFC HTS Bulks 
A new type HTS LSM with ZFC HTS bulks is 

proposed based on the idea of position-holding 
characteristic of HTS bulk generating a synchronizing 
force with a travelling wave magnetic field generated 
by current-carrying armature winding. 

The single-sided and double-sided HTS LSMs 
with ZFC HTS bulks as moving secondary have been 
studied and the physical structure models are shown in 
Fig. 3. The HTS bulks are cooled to superconducting 
state by liquid-N2 in cryogenic vessels. 

Primary Stator

HTS Bulks Cryogenic Vessels

Primary Stator

HTS Bulks Cryogenic Vessels

 
Primary stator 

HTS bulk  Cryogenic vessels 

 
a. Single-sided HTS LSM 

 

Primary stators 

HTS bulks 

 
b. Double-sided HTS LSM 

Fig. 3  HTS LSM with ZFC HTS bulks as secondary 

Kim model can be used to analyze the electromagnetic 
characteristic of HTS bulk exposed to external 
magnetic field[17]. The current density Jc of HTS bulk 
varies with the external magnetic field and has the 
form 

0

( )
( , )

1
c

c i
i

J TJ H T
H H

=
+

            (2) 

where Jc(T)=Jc0(Tc−T)/(Tc−T0), Hi the local magnetic 
field, T the temperature, H0 the macroscopic materials 
parameter with the dimension of field, Tc the critical 
temperature, and Jc0 the critical current density at the 
reference temperature T0. The model was found to 
agree well with the experimental results when the 

sample was assumed to be a solid cylinder. 
1.3  HTS LSM with HTS Coil Windings 

The model of HTS LSM with HTS primary coils 
is shown in Fig. 4.  
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Fig. 4. HTS LSM with HTS coil windings 

HTS pancake coils are used by wounding 
concentrated in one tooth for its easiness to 
manufacture. The conventional PMs and backiron are 
applied as secondary. The thrust force Fx and normal 
force Fy can be calculated simply from the d-q model 
equations. When the resistance of HTS coil windings 
R=0, the d-q model equations can be expressed as[18] 

d
d

d
d qu

t
ψ

ωψ= −                (3) 

d
d

q
q du

t
ψ

ωψ= +                (4) 

dpd d d pL i M iψ = + , 1
dp

3
2 p

EM
Iω

=        (5) 

q q qL iψ = , PM dp pM iψ =            (6) 

where ψd and ψq are the flux linkage in the d-axis and 
q-axis respectively, ψPM the flux of the phase winding 
produced by the mover PMs; E1 the back electromotive 
force (EMF), Ip the equivalent current of the PM 
corresponding to its coercive force and height, Ld and 
Lq the induction of d-axis and q-axis respectively, id 
and iq the current of d-axis and q-axis respectively, Mdp 
the mutual inductance between the windings of d-axis 
and PMs. Based on the power balance procedure, we 
have: 
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qd
y d qF i i

g g
ψψ ∂∂
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∂ ∂

              (8) 

where Pe is the electromagnetic power, v the linear 
velocity, ω the synchronous angular velocity, f the 
frequency, g the length of air-gap. When the LSM is 
the flat structure, we have Ld=Lq. For the P pairs poles 
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LSM, the thrust can be finally expressed as 

PM
3 π
2x qF p iψ

τ
=               (9) 

2  Electromagnetic Characteristics of  
HTS LSM 

2.1  HTS LSM with FC HTS Bulk Magnets 
The major dimensions and parameters of the 

simulation model of HTS LSM with FC HTS bulk 
magnets are shown in Table 1. The concentrated 
diametral winding is applied in the primary winding 
with the polar pitch of 45 mm. The relative 
permeability of HTS bulk magnet is assigned as μ=0.4 
by experiences. The finite element model of HTS LSM 
is built as shown in Fig. 5 with the materials are 
numbered as: ① air, ② HTS bulk magnet South, ③ 

HTS bulk magnet North, ④ HTS bulk magnet back 

iron, ⑤ primary iron-core, and ⑥ winding coils. 

Table 1  Major dimensions of HTS bulk magnet HTS LSM 

Primary  

Copper windings  

Number of turns 200 

Diameter of copper wire/mm 1.18 

Resistivity/Ω·m 1.75×10−8 

Iron core  

Tooth length (movement direction)/mm 10 

Tooth width lt/mm 150 

Tooth depth/mm 100 

Slot width/mm 20 

Polar pitch τ 45 

Main air gap g/mm 6 

Secondary  

HTS bulk magnets  

Magnet length (movement direction) ls/mm 45 

Magnet width ws/mm 50 

Magnet height hs/mm 12 

Trapped magnetic field B/T 0.5 

Relative permeability 0.4 

Number of magnets along longitudinal direction 6 

Number of magnets along transverse direction 3 

 
The thrust Fx versus load angle characteristics are 

shown in Fig. 6 when the backiron is used or not. As 

can be seen from the graph, the thrust-angle curve is 
almost sinusoidal and has a peak at angle of 90° and 
270°. It also indicates that the HTS LSM with backiron 
has bigger Fx than that without one. Fig. 7 shows the 
Fx versus the trapped field of HTS bulk for various 
air-gap length, and it shows that the Fx increases with 
the trapped field of HTS bulk, and decreases with the 
length of air-gap. 

① ② ③ ④ ⑤ ⑥① ② ③ ④ ⑤ ⑥

 
Fig. 5  Finite element model of HTS bulk magnet LSM 
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   Fig. 6  Fx versus load angle characteristic with and 

without backiron. 
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   Fig. 7  Fx versus the trapped field of HTS bulk for  

various air-gap length 

2.2  HTS LSM with ZFC HTS Bulks 
The finite element model of the HTS LSM with 

ZFC HTS bulks is built based on the dimensions as 
shown in Table 1 without backiron and a small trapped 
magnetic field after the current is applied to the 
primary coils. Fig. 8 shows the thrust versus working 
current for various lengths of HTS bulk. It indicates 
that the thrust Fx increases with increasing of the 
current and the length of HTS bulks. 
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Fig. 8  Fx versus current for various lengths of HTS bulk 

2.3  HTS LSM with HTS Coil Windings 
Because of the zero-resistance characteristic of 

HTS tape, the larger current can be applied to the HTS 
coils. Fig. 9 shows the thrust Fx versus load angle 
characteristics for various working currents of HTS 
primary windings. As is indicated in the graph, the Fx 
can increase by 16.5 times to 2 840 N when the current 
changes from 3.3 A to 99 A, which can not be realized 
by conventional copper windings. 
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Fig. 9  Fx versus load angle for various currents of HTS coils 

3  Application Technology of HTS  
LSM 

3.1  HTS Magnetic Levitation Linear Actuator 
The application model of HTS linear synchronous 

actuator is shown in Fig. 10, which is composed of a 
HTS LSM with HTS bulk magnets as moving 
secondary and HTS magnetic levitation systems on 
both sides of the HTS LSM. While the levitating force 
is directly proportional to the gradient of magnetic 
field over the PM-guideway, the lateral guidance force 
depends on the trapped flux in the HTS bulks. The 
HTS linear actuator can provide inherent stability in 
both vertical and lateral directions and realize 
self-levitation and self-guidance without any active 

control system. 
The levitation force and guidance force are 

generated based on the pinning force or the shielding 
force of HTS bulks[19], and can be calculated by 
multiplying an external magnetic field by a shielding 
current flowing in a HTS bulk with the following 
equations: 

 TH  2  2

Lev
 0  2  2

d d d
L W

c x
L W

F J B x y z
d d− −

= ∫ ∫ ∫      (10) 

 TH  2  2

Gui
 0  2  2

d d d
L W

c z
L W

F J B x y z
d d− −

= ∫ ∫ ∫      (11) 

where FLev is the levitation force, FGui the guidance 
force, Jc the critical current density, Bx the field along 
the transverse direction, Bz the field along the vertical 
direction, δ the depth of field penetration, L, W and TH 
are the length, width and thickness of a rectangle HTS 
bulk, respectively. In this paper, it is assumed that 
induced shielding currents flowing in the bulk body 
were equal to the critical currents. The δ used as 
integral range is given by the following relation:[20] 

zfc

0

z

c

B B
J

d
λµ

−
=                 (12) 

where Bzfc is the trapped magnetic field, λ the Nagaoka 
coefficient determined by the configuration of a 
sample.  

The HTS magnetic levitation linear actuator 
composed of HTS LSM and HTS magnetic levitation 
system with an optimal structure based on the 
construction as shown in Fig. 10 can be applied in 
transportation field such as maglev, industrial 
automation control and production transmission lines 
such as ropeless linear elevator, semiconductor 
manufacturing handling system, etc. Compared with 
the conventional linear motors, HTS LSMs have many 
obvious advantages such as smaller volume, bigger 
propulsion, and higher power factor in these 
applications. 

Based on the theory analysis, a HTS LSM 
experimental device has been developed as shown in 
Fig. 11, which is composed of primary stator and 
secondary mover, and the secondary HTS bulk 
magnets are installed in a cryogenic vessel which is 
fixed on the secondary mover. Now, the mover can 
slide freely along the guide rails on both sides of the 
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stator, and the experimental slide rail will be replaced 
by the HTS levitation system. 

 
Fig. 10  A small scale prototype HTS bulk magnet LSM 

integrated with HTS levitation system. 

 
Fig. 11  Experimental setup of the HTS LSM 

3.2  Electromagnetic Aircraft Launcher 
The realization of HTS bulk magnet HTS LSM 

for the electromagnetic aircraft launch system 
(EMALS) is shown in Fig. 12. The double-sided HTS 
LSM is integrated with a HTS magnetic levitation 
system, so that the slider and secondary rotor can move 
without any frication. The HTS bulk magnets are 
installed in a cryogenic vessels made by electrically 
and magnetically nonconductive material with the 
same pole in transverse direction and alternating poles 
of N and S in longitudinal direction as shown in  
Fig. 13. The specifications and technical features for 
the design of an EMALS include[9]: aircraft mass is  
23 000 kg, maximum velocity is 103 m/s, maximal 
available path for acceleration is 94.49 m, maximal 
available path for deceleration is 5.79 m, acceleration, 
acceleration period are 56.01 m/s2, 1.84 s, deceleration, 
deceleration period are 916.2 m/s2, 0.112 s, goal energy 
is 122 MJ, goal thrust is 2 MN. 

Based on the technical data presented above, the 
basic design dimensions and parameters for three types 
of linear motors containing LIM, PMLSM and HTS 

LSM are compared with the results shown in Table 2. 
It can be seen from Table 2 that an almost unity power 
factor can be obtained for the HTS bulk magnet LSM, 
which would result in a dramatic reduction in the size 
and cost of the power electronic converters. If the 
temperature can be reduced to around 40 K, a much 
smaller rotor mass can be obtained and such a HTS 
LSM could become the best candidate for this 
application in the future. 
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Fig. 12  HTS LSM integrated with HTS levitation system for 

electromagnetic aircraft launch 
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Fig. 13  Secondary HTS bulk magnet array 

Table 2  Comparison of important data for LIM, PMLSM 

and HTS LSM[9] 

 LIM PMLSM 
HTS LSM 

77 K Low T 
Pole pitch 0.650 0.074 0.084 0.084 

Rotor length in z/m 7.80 7.38 6.38 2.35 
Rotor height in y/ m 3.96 2.13 2.14 2.14 
Total rotor mass /kg 2 070 2 104 2 485 916 

Inductance of stator coil/μH 0.840 1.215 0.052 0.052 
Resistance of stator coil/μΩ 8.87 160.00 114.00 114.00 

Frequency corresponding to 103 m/s 83 698 613 613 
cosφ (at speed 103 m/s) 0.106 0.642 0.999 0.999 

4  Conclusions 
The HTS LSM using either field-cooled or 

zero-field-cooled HTS bulk as secondary, and HTS coil 
windings as primary are proposed with their design 
model presented. The electromagnetic characteristics 
of these HTS LSMs have been studied using magnetic 
field FEM, with verification of the HTS LSM 
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prototype developed, and the analysis results on the 
models used show that: 1) the thrust can increase by 
4.05 times when the trapped field of HTS bulk 
increases from 0.5 T to 2.5 T, 2) the thrust will increase 
by 16.5 times to 2 840 N when the coil current change 
from 3.3 A to 99 A for the LSM with HTS windings 
primary. The application models of HTS linear actuator 
and electromagnetic aircraft launcher are built with 
their characteristics presented, which have shown the 
superiorities of applying the HTS LSM technology in 
the transportation field. 
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