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Abstract  The forthcoming semantic Web evolving from the current World Wide Web is designed to define 

the semantics of information and services on the web, thereby endowing the web with intelligence to automatically 
reason about the web contents. Description logics (DLs) play a substantial role in the semantic Web, since they 
underlie the W3C-recommended Web ontology language (OWL), which is derived from ontology research in 
artificial intelligence (AI) in order to achieve the goal of the semantic Web. However, the knowledge and data in 
the Semantic Web are large-scale, dispersive, multi-authored, and therefore usually inconsistent. It is reasonable 
and imperative to develop practical reasoning techniques for inconsistent ontologies. This paper proposes a new 
type of paraconsistent description logics based on Hunter’s quasi-classical logic (QCL), which are termed as 
quasi-classical description logics (QCDLs). QCDLs avoid logical explosion. A semantic tableau calculus is 
constructed in QCDLs for the reasoning on the knowledge bases with acyclic TBox. Furthermore, a sound, 
complete and decidable consequence relation based on the calculus is defined. These enable a complete framework 
for paraconsistent reasoning in the Semantic Web. A comparison with other key paraconsistent description logics is 
also given. It is shown that QCDLs possess more expressive semantics and stronger reasoning capability, and that 
its connectives behave classically at the object level. 
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【摘要】源自当今互联网的语义网研究的目的是定义信息语义和网络服务，因此需要赋予网络智能以便能够自动对网络

内容进行推理。各种描述逻辑(DLs)在语义网的研究中扮演着重要角色，构成了W3C推荐的网络本体语言(OWL)的基础，而

OWL源于为达到语义网目标的人工智能(AI)本体论研究。语义网的知识和数据量巨大、分散、来源众多且因此通常不具有协

调性。因此，必须开发针对非协调本体的实用的推理技术。该文基于Hunter的拟经典逻辑(QCL)，构造了新型超协调拟经典描

述逻辑(QCDLs)，避免了逻辑爆炸问题，同时，针对基于非周期TBox的知识库推理问题，建立了QCDLs语义表演算，进而定

义了一种可靠、完备且可判定的推理关系，从而构建了完整的语义网推理框架。与其他重要的超协调描述逻辑进行了比较，

结果表明QCDLs具有更强的表达语义和推理能力，并且其相关行为在目标层次上表现出经典性。 
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1  Introduction 
The forthcoming semantic Web evolving from the 

current World Wide Web is designed to define the 
semantics of information and services on the web, 
thereby endowing the web with intelligence to 

automatically reason about the web contents[1]. 
Description Logics play a substantial role in the 
Semantic Web since they underlie the 
W3C-recommended Web ontology language, which is 
derived from ontology research in artificial intelligence 
in order to achieve the goal of the semantic Web[2-3]. 
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However, a difficult dilemma is faced. It is rarely 
possible in practice to obtain consistent knowledge 
bases in a Semantic Web environment, since the 
knowledge and data are usually large-scale, dispersive 
and multi-authored. But classical logic is explosive 
when inconsistent knowledge is involved. So are 
description logics, because description logics are 
structured fragments of classical first-order logic[2]. 
Hence, it is necessary and significant to explore the 
ways of dealing with inconsistent knowledge in the 
Semantic Web. 

Inconsistency handling is a well-known topic in 
AI. In tradition, there are two fundamentally different 
approaches to dealing with inconsistency, which are 
usually based on two different points of view on 
inconsistency. The first approach considers 
inconsistent data to be abnormal and incorrect 
knowledge, which should be eliminated or repaired in 
order to obtain a consistent knowledge base[4-5]. But 
this approach is usually unpractical and unfeasible in 
the Semantic Web environment. On the contrary, in the 
second approach, inconsistency is believed to be 
natural and reasonable, and therefore should be 
tolerated[6-12]. Because of the properties of knowledge 
in the Semantic Web mentioned above, it is usually 
difficult to determine which is true and which is false 
when inconsistency is presented. The second approach 
is therefore more suitable for the semantic Web 
applications. Many kinds of inconsistency-tolerated 
logics, usually called paraconsistent logics where ex 
contradictione ouodlibet (ECQ) is intrinsically avoided, 
have been proposed in AI. The two very useful and 
interesting types of such logics are Belnap’s 
Four-Valued Logic[13] and Hunter’s quasi-classical 
logic (QCL)[6,14-15]. Four-valued logic has been 
transferred to DLs to propose so-called four-valued 
description logics (FVDLs)[6,9,11], in which the 
additional truth values standing for undefined and 
overdefined are employed. However, FVDLs are too 
weak to infer enough conclusions which are inferable 
in the classical case. QCL grounds on different idea 
from Belnap’s four-valued logic, where the order of 
applying compositional proof rules and 
decompositional proof rules is restricted. QCL is more 

expressive in semantics and stronger in reasoning 
capability than four-valued logic methodology. 
Moreover, its connectives behave in a “classical 
manner” at object level so that important proof rules 
such as modus tollens, modus ponens, and disjunctive 
syllogism hold again[14-17]. 

In this paper, we apply the methodology of QCL 
into DLs and propose a paraconsistent description 
logic, called quasi-classical description logics 
(QCDLs), in order that the useful and non-trivial 
conclusions might be inferred from inconsistent 
knowledge. QCDLs inherit merits from QCL and 
preserve more expressive and stronger semantics. 
Furthermore, a semantic tableau calculus for the 
reasoning problems on the knowledge bases with 
acyclic TBox is constructed. Based on the tableau 
calculus, a sound, complete and decidable consequence 
relation is defined. The description logic ALC is 
considered in chief because it is regarded as the most 
foundational one and covers the core of OWL-DL[3]. 

The rest of this paper is organized as follows: 
Section 2 provides a brief refresher on description 
logics, and analyzes the reason why ECQ happens in 
DLs. The formal semantics of QCDLs is defined in 
Section 3. In Section 4, the semantic tableau for 
QCDLs is presented and the properties of QCDLs are 
analyzed. In Section 5, we give a comparison with 
other key paraconsistent reasoning techniques. Section 
6 concludes the paper. 

2  Preliminaries 
In this section, a brief review for the DL ALC  is 

provided, and the reason of ECQ in DLs is analyzed. 
2.1  Description Logic ALC  

The reader is assumed to be familiar with 
description logics. Please refer to reference [2] if 
detailed background is needed. 

Definition 1  The alphabet for ALC  language 
is constructed as follows: 

(1) A set of unary predicate symbols CN  
denoting concept names; 

(2) A set of binary predicate symbols RN  
denoting role names; 

(3) A set of constant symbols IN  denoting 
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individual names, in which there is assumedly at least 
one element; 

(4) A set of logical symbols including connectives, 
quantifiers and auxiliary symbols. 

ALC  concepts are inductively defined as 
follows. 

Definition 2  The smallest set  satisfying the 
following conditions constitutes ALC -concepts: 

(1) The top concept , the bottom concept ⊥  
and every concept name CA N∈  are ALC -concepts; 

(2) If C  and D  are ALC -concepts and 

RR N∈ , then C D , C D , C¬ , R C∀ .  and 
R C∃ .  are ALC -concepts. 

The formal semantics of   is defined in 
terms of an interpretation ( )= ,⋅

  . The domain 


  is a non-empty set of individuals and the 
interpretation function ⋅  satisfies the definition in 
Table 1. 

Table 1  Syntax and semantics of ALC 
Name Syntax Semantics 

Concept name A I IA ⊆  

Role name R I I IR ⊆ ×   

Individual name a I Ia ∈  
Top concept T I

  
Bottom concept ⊥  ∅  

Conjunction C D  I IC D∩  
Disjunction C D  I IC D∪  
Negation C¬  \I IC  

Exists restriction R C∃ .  
{ ( )

and }

I

I

x y x y R
y C

| ∃ . , ∈

∈
 

Value restriction R C∀ .  
{ ( )
implies }

I

I

x y x y R
y C

| ∀ . , ∈

∈
 

Concept inclusion C D  I IC D⊆  

Concept assertion ( )C a  I Ia C∈  
Role assertion ( )R a b,  ( )I I Ia b R, ∈  

 
An ALC  knowledge base (or ontology) involves 

a set of terminological axioms, called TBox, and a set 
of assertional axioms, called ABox. The most general 
form of terminological axioms is general concept 
inclusion (GCI), which is of the form C D , where 
both C  and D  are concepts. It means that every 
individual of C  is also the individual of D . An 
concept inclusion, which is of the form A C  where 

CA N∈  and C  is any concept, is called 
specialization. A definition axiom of TBox, which is of 
the form A C≡  where CA N∈ , can be viewed as an 

abbreviation of A C  and C A . Assertional 
axiom is of the form ( )C a  or ( )R a b,  where C ∈ , 

RR N∈  and Ia b N, ∈ . An assertion ( )C a  means 
that the individual a  is an instance of concept C , 
and an assertion ( )R a b,  means that there is a 
relationship R  between the individuals a  and b . 
The semantics of terminological and assertional 
axioms is also shown in Table 1. An interpretation I  
satisfies a knowledge base Σ , that is, I  is a model 
of Σ , iff it satisfies each axiom in the TBox and the 
ABox of Σ . 

In this paper, we focus on some special forms of 
TBox. A finite set of definitions  is called 
terminology if for every atomic concept CA N∈  there 
is at most one axiom in  whose left-hand side is A . 
A finite set of definitions and specializations T  is 
called generalized terminology if for every atomic 
concept CA N∈  there is at most one axiom in   
whose left-hand side is A . Let CA B N, ∈  be concept 
names occurring in a terminology (or generalized 
terminology)  . We say that A  directly uses B  in 
  if B  appears on the right-hand side of the 
definition (or specialization) of A , and we call uses 
the transitive closure of the relation directly uses. Then 
  contains a cycle iff there exists an atomic concept 

CA N∈  in   that uses itself. Otherwise,   is 
called acyclic. 

The purpose of a knowledge representation 
system is not only to represent and store existed 
knowledge but also to infer implicit knowledge. 
Various reasoning tasks are considered for DLs. Since 
the topic of our work is to discuss how to derive 
non-trivial inferences from inconsistent knowledge, it 
is sufficient to consider concept subsumption and 
instance checking: 

(1) Concept Subsumption: a concept C  is 
subsumed by another concept D  w.r.t. a knowledge 
base Σ , written C DΣ   , if I IC D⊆  holds for 
every model I  of Σ . 

(2) Instance Checking: an individual a  is an 
instance of a concept C  w.r.t. a knowledge base Σ , 
written ( )C aΣ  , if I Ia C∈  holds for every model 
I  of Σ . A pair of individuals ( )a b,  is an instance 
of a role R  w.r.t. a knowledge base Σ , written 
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( )R a bΣ , , if ( )I I Ia b R, ∈  holds for every model 
I  of Σ . 
2.2  ECQ in Description Logics 

Classical description logics preserve ECQ 
because description logics are structured fragments of 
classical first-order logic[2]. Any concept inclusion and 
any assertion are consequences of an inconsistent 
knowledge base in classical semantics and classical 
reasoning techniques of DLs. Let us consider an 
example. 

Exmaple 1  Consider the following ALC - 
knowledge base Σ =< , >  : 

{Driver Person PROFILE= ∃  
DrivingLicense CONTEXT Position∃ .

Traveler (Driver Passenger) TO Position}∃ .  
{Traveler( jack) Passenger( jack)= ,¬ ,  
PROFILE DrivingLicense( jack)}¬∃ .  

This simplified knowledge base describes a 
possible situation of an urban traffic system. In this 
knowledge base, a driver is portryed as a person who 
has the driving license as his/her profile, the current 
position information as his/her dynamic context. A 
Traveler is designed as a driver or passenger who 
wants to go to some position. Jack was originally 
described as a traveler and not a passenger by 
engineers. However, an assertion describing that jack 
no longer has certified driving license is added into the 
knowledge base after some events have happened. This 
assertion may be added by importing knowledge from 
other sources such as police, or by another maintainer 
so that the knowledge base becomes inconsistent. 

Users will find that what they obtain are totally 
meaningless answers when they raise a query to this 
knowledge base. 

In model-theoretic view, a concept inclusion 
query or an assertion query is a semantic consequence 
of a knowledge base iff every model of the knowledge 
base is a model of the query. But it is obvious that no 
model can satisfy the inconsistent knowledge base Σ  
by the definition of classical semantics of ALC . In 
other words, there is no model of Σ  that is not a 
model of the query. Vacuously, every model of Σ is a 
model of the query. So, any query is a semantic 
consequence of Σ . 

In proof-theoretic view, it is a corresponding case 
in any complete reasoning approach. Consider 
semantic tableau calculus, the classical tableau for Σ  
and an arbitrary query is closed since the expanding 
process always encounter a classical clash, i.e., 
DrivingLicense( )i  and DrivingLicense( )i¬  where 
i  is an individual name generated in terms of the 
expension rule for ∃ . It means the query is a logical 
consequence of Σ . 

3  Quasi-Classical Description Logics 
In this section, the semantics of the quasi-classical 

DL QC- ALC  is defined. There are a number of 
challenges to transplant quasi-classical semantics from 
QCL into DLs, because of differences between them. 
Syntactically, for example, DLs have no function and 
explicit free variable which in fact implicitly exists in 
concept. Semantically, the descriptive semantics of 
DLs is dissimilar to the Herbrand interpretation of 
QCL. 

We now consider the essential ideas behind 
QCDLs. Firstly, QCDLs separate the mutually 
exclusive relation between a formula and its negation, 
like some paraconsistent logics. This can achieve 
paraconsistency in the aspect of model theory. 
Secondly, applying of decompositional rules in proofs 
of QCDLs is forbidden after compositional rules have 
been applied. This can make ECQ be avoided in the 
aspect of proof theory. Thirdly, QCDLs preserve 
resolution to constitute the basis of useful 
paraconsistent reasoning. Hence, QCDLs possess more 
expressive and stronger semantics to capture 
resolution. 

The syntax of our quasi-classical description logic 
QC- ALC  is the same as classical ALC . It is one of 
the merits of QC- ALC  since users usually do not 
want any syntactical change in their knowledge bases, 
and paraconsistent reasoning can be executed in any 
classical ALC -knowledge base immediately. We first 
show some basic and necessary definitions. 

Definition 3  Let   denote a set including 
concept inclusions, concept assertions and/or role 
assertions formed from  , RN  and IN . 
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Definition 4 
(1) All concept names in CN , the top concept   

and the bottom concept ⊥  are atomic concepts. 
(2) If A  is an atomic concept and R  is a role 

name, then ( )A a , ( )A a¬  and ( )R a b,  are literals, 
where Ia b N, ∈ . 

(3) A clause is a finite set of literals. A clause 
empty clause, denoted , if it has no literals. 

(4) A clause set is a finite set of clauses. 
(5) Let α  be a clause 1 2{ , }nA A A, , , the focus 

of α  by iA , denoted ( )iAα⊗ , , is defined as the 
clause obtained by removing iA  from the set 

1 2{ , }nA A A, , . In the case of 1n = , that is a clause 
just with one disjunct, we assume 1 1 1({ } ) { }A A A⊗ , = . 
Intuitively, a clause is a disjunction of the literals in it 
and a clause set is a conjunction of the clauses in it. 

Example 2 Let {Traveler( jack)α = , ¬ Passenger 
( jack) TO( jack airport)}, , be a clause, where Traveler 
( jack) , Passenger( jack)¬  and TO( jack airport),  are 
literals. Then, ( Traveler( jack)) { Passengerα⊗ , = ¬  
( jack) TO( jack, , airport)} . Sequentially, the semantics 
of QC- ALC  can be defined based on a form of QC 
interpretation. 

Definition 5  A QC interpretation ( )= ,⋅

   
consists of a non-empty set  , called the domain of 
 , and a function ⋅  that maps every individual 
name to a element of  , every concept name (i.e. 
atomic concept) to a pair of subsets of  , and every 
role name to a pair of subsets of × 

  , such that 
=< ,∅ >

   and ⊥ =< ∅, >

  . 
Note that a QC interpretation is defined only for 

atomic concept names and role names but not for any 
compound concept. It is more similar to the 
interpretation in classical first-order logic but less to 
classical DLs in which compound concepts are also 
directly interpreted. 

Example 3 Let ( )= ,⋅

   be a QC 
interpretation, where { }jack airport= ,

 , such that 
jack jack=  , airport airport=  

Traveler {jack} {airport}=< , >  
Passenger {jack}=< ∅, >  
Driver {jack} {jack}=< , >  
Position {airport}=< ,∅ >  

TO {( jack airport)}=< , ,∅ >  

Two functions proj+  and proj+  are defined as 
follows for simplicity of notation: 

proj ( )A A A+ < + ,− > = +  
and 

proj ( )A A A− < + ,− > = −  
where both A+  and A−  are sets. 

We say that ( )proj A+   (or proj ( )R+  ) is the 
positive extension of the concept name A  (or role 
name R ) in the QC interpretation  , while 
proj ( )A−   (or proj ( )R−  ) is the negative extension. 
If proj ( )a A+∈  , then we say that a  is a positive 
instance of C  in  , while if proj ( )a A−∈  , then 
we say that a  is a negative instance of C  in  . 
Note that the negative extension for a role name is not 
necessary in this work because ALC  does not contain 
negative role constructor. However, we still define it to 
retain consistency of notation with possible extensions 
to more expressive description logics. 

With the QC interpretation, the notion of 
satisfiability for formulae in QC- ALC  could be 
defined inductively. We first consider the following 
intuitive meaning for literals being satisfied or not in a 
QC interpretation  : 

proj ( )a A+∈   means ( )A a  is “satisfiable” in 
 ; 

proj ( )a A+∉   means ( )A a  is not “satisfiable” 
in  ; 

proj ( )a A−∈   means ( )A a¬  is “satisfiable” in 
 ; 

proj ( )a A−∉   means ( )A a¬  is not “satisfiable” 
in  . 

It is easy to see that the mutually exclusive 
relation between a formula and its negation has been 
decoupled in the aspect of semantics since we allow 
simultaneous satisfaction for an assertion and its 
negation. 

Following the above intuition, the decoupled 
satisfaction for literals is formally defined as follows. 
Then, the satisfactions for more complex formulae in 
  are defined based on the decoupled satisfaction. 

Definition 6  For a QC interpretation  , a 
satisfiability relation for literals, called Decoupled 
Satisfaction and denoted d , is defined as follows, 
where ( )A a  is an atomic concept assertion and 
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( )R a b,  is a role assertion. 
( )d A a   iff ( )a proj A+∈   
( )d A a¬   iff ( )a proj A−∈   

( )d R a b,  iff ( ) ( )a b proj R+, ∈    
Example 4  Consider again the QC interpretation 

  in Example 3. So 
Traveler( jack)d  , Traveler( jack)d ¬/   

Passenger( jack)d /  , Passenger( jack)d ¬  
Driver( jack)d  , Driver( jack)d ¬   

TO( jack airport)d ,   
This definition of the decoupled satisfaction is the 

base case for the two further satisfaction relations, 
namely strong satisfaction and weak satisfaction, 
which allow us to define an entailment relation. 

The main idea behind QCDLs is that proofs are 
separated two stages in which decompositional phase, 
including resolution, is followed by compositional 
phase. Hence, the semantics for these two stages is 
defined to capture this idea. Firstly, we show the 
inductive definition of strong satisfaction 
corresponding to the decompositional phase, in which 
the equivalences allow rewriting any formula in   
into a set of assertions, and then into clause, which can 
be evaluated w.r.t. the QC interpretation. 

Definition 7  For a QC interpretation  , a 
satisfiability relation, called strong satisfaction and 
denoted s , is defined as follows, where 1 2 , nA A A, ,  
are literals in  , RR N∈  is a role name and 

Ia b N, ∈  are individual names. 
For a clause 1 2{ , }nA A Aα = , , , sI α  iff 
(1) there is at least one iA α∈  such that d iI A , 

and 
(2) for all iA α∈ , s iI A¬  implies 

( )s iI Aα⊗ , . 
For C D C, ∈ , the definition is extended as 

follows. 

sI C D   iff for any individual Ia N∈  
{ ( )}sI C D a¬  . 

( )sI C a  iff { ( )}sI C a . 
( )sI R a b,  iff { ( )}sI R a b, . 

Let β  be a set of assertions. The definition is 
extended as follows. 

if ( )C D a β∈ , sI β  iff 
( { ( )}) { ( )}sI C D a C aβ − ∪   and 

( { ( )}) { ( )}sI C D a D aβ − ∪  . 
if ( )C D a β∈ , sI β  iff 
( { ( )}) { ( ) ( )}sI C D a C a D aβ − ∪ ,  . 
if ( )C a β¬¬ ∈ , sI β  iff 
( { ( )}) { ( )}sI C a C aβ − ¬¬ ∪ . 
if ( )( )C D a β¬ ∈ , sI β  iff 
( { ( )( )}) { ( )}sI C D a C D aβ − ¬ ∪ ¬ ¬   . 
if ( )( )C D a β¬ ∈ , sI β  iff 
( { ( )( )}) { ( )}sI C D a C D aβ − ¬ ∪ ¬ ¬   . 
if ( )R C a β∀ . ∈ , sI β  iff for all Ib N∈ , 

( )sI R a b,  implies ( { ( )}) { ( )}sI R C a C bβ − ∀ . ∪ . 
if ( )R C a β∃ . ∈ , sI β  iff there is some 

Ib N∈  such that 
( { ( )}) { ( )}sI R C a R a bβ − ∃ . ∪ ,  and 

( { ( )}) { ( )}sI R C a C bβ − ∃ . ∪ . 
if ( )R C a β¬∀ . ∈ , sI β  iff 
( { ( )}) { ( )}sI R C a R C aβ − ¬∀ . ∪ ∃ .¬ . 
if ( )R C a β¬∃ . ∈ , sI β  iff 
( { ( )}) { ( )}sI R C a R C aβ − ¬∃ . ∪ ∀ .¬ . 
Example 5  Consider again the QC interpretation 

  in Example 3. So 
Traveler TO Positions ∃ .   , Travelers/    

Passenger , 
Driver Passenger( jack)s ¬   and 

Driver Passenger( jack)s/   . 
Since resolution rule is expected to be preserved 

in the case of the decoupling of the mutually exclusive 
relation between a formula and its negation, the items 
for disjunction in strong satisfaction are defined to 
capture a form of resolution in semantics. 

Definition 8  Let Σ = ,   be a knowledge 
base, where   is a TBox and   is a ABox. A QC 
interpretation   is said to strongly satisfy Σ , 
written s Σ  , if   strongly satisfies every axiom 
of Σ . Such a QC interpretation   is said to be a 
strong model of Σ . 

Example 6  Let ( )= ,⋅

   be a QC 
interpretation, where { 123jack no college= , , ,

  
 }airport , such that jack jack=  , 
no123 no123= , colloge college= ,
airport airport= , 

Driver {jack} {jack no123=< , , ,  
college airport}, > , 
Person {jack}=< ,∅ > , 
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DriverLicense {no123} {no123}=< , > , 
Position {college airport}=< , ,∅ > , 
Traveler {jack} {jack no123=< , , ,  
college airport}, > , 
Passenger {jack} {jack}=< , > , 
PROFILE {( jack no123)}=< , ,∅ > , 
CONTEXT {( jack college)}=< , ,∅ > , and 
TO {( jack airport)}=< , ,∅ > . 
So Traveler TO Positions ∃ .   , s   

Traveler Passenger , 
Driver Passenger( jack)s ¬  , Drivers   

Passenger( jack) , and 
For the inconsistent knowledge base Σ  in 

Example 1, s Σ   holds, that is,   is a strong 
model of Σ . 

The definition for weak satisfaction, 
corresponding to the compositional phase in proofs, is 
similar to strong satisfaction other than the definition 
for disjunction, which is no longer defined to capture 
resolution. 

Definition 9  For a QC interpretation  , a 
satisfiability relation, called weak satisfaction and 
denoted as w , is defined as follows, where A  is a 
literal in  , C D, ∈  are ALC -concepts, RR N∈  
is a role name and Ia b N, ∈  are individual names. 

w A   iff d A  . 

w C D    iff for all ( )a U L∈  
( )w C D a¬   . 

( )w C D a   iff ( )w C a   and ( )w D a  . 
( )w C D a   iff ( )w C a   or ( )w D a  . 

( )w C a¬¬   iff ( )w C a  . 
( )( )w C D a¬    iff ( )w C D a¬ ¬   . 
( )( )w C D a¬    iff ( )w C D a¬ ¬   . 

( )w R C a∀ .   iff for all Ib N∈ , ( )w R a b,  
implies ( )w C b  . 

( )w R C a∃ .   iff there is some Ib N∈  such that 
( )w R a b,  and ( )w C b  . 

( )w R C a¬∀ .   iff ( )w R C a∃ .¬  . 
( )w R C a¬∃ .   iff ( )w R C a∀ .¬  . 

Example 7  Consider the QC interpretation   
in Example 3 again. So 

Traveler TO Positionw ∃ .   , Travelerw /    
Passenger , 

Driver Passenger( jack)w ¬  , Driverw   

Passenger( jack) . 
Example 8  Consider the QC interpretation   

in Example 6 again. So 
Traveler TO Positionw ∃ .   , Travelerw   

Passenger , 
Driver Passenger( jack)w ¬  , Driverw   

Passenger( jack)  
Sequentially, based on the two satisfaction 

defined above, QCDLs entailment is established, 
which is of the same form as classical DLs entailment, 
except that strong satisfaction is used for the 
assumptions and weak satisfaction is used for the 
conclusion. 

Definition 10  For a knowledge base Σ , let Q  
denote an entailment relation, called the QC 
Entailment Relation, which is defined as follows, 
where C D C, ∈  are concept names, RR N∈  and 

Ia b N, ∈  are individual names. 

Q C DΣ    iff for any QC interpretation  , 

s Σ   implies w C D   . 
( )Q C aΣ   iff for any QC interpretation  , 

s Σ   implies ( )w C a  . 
( )Q R a bΣ ,  iff for any QC interpretation  , 

s Σ   implies ( )w R a b, . 
Example 9  Consider the inconsistent knowledge 

base Σ  in Example 1 again. The followings can be 
verified. 

Traveler TO PositionQΣ ∃ .  , TravelerQΣ /   
Passenger , 

TO Position( jack)QΣ ∃ . , and PersonQΣ / ¬  
( jack) . 

This example shows that Q  is non-trivializable 
in the sense that it is not the case that every formula in 
  is entailed by Σ  even if Σ  is classically 
inconsistent. 

4  A Tableau Calculus for QCDLs 
The tableau-based reasoning technique is most 

widely used to solve the reasoning problems in DLs. It 
was first introduced to the area of DLs in reference 
[19], and developed and extended by many other work 
such as reference [19]. In this section, the tableau 
approach for classical DLs is adapted to provide a 
paraconsistent automated proof procedure – the QC 
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semantic tableau, which can be used to handle 
reasoning problems on the knowledge base with 
acyclic TBox. 

In classical semantics, the reasoning problems on 
the knowledge base with acyclic TBox can be reduced 
to problems on the knowledge base with the empty 
TBox by means of normalization and expanding 
concepts[2]. However, the normalization is no longer 
valid in QC semantics. So, it is needed in QC semantic 
tableau to develop particular expansion rules for 
acyclic inclusion axioms. 

The following definitions are needed for the 
adaptation. 

Definition 11  The set of signed formulae of   
is defined as { }ϕ ϕ∗ ∗= ∪ | ∈   . 

We regard the formulae in  ∗  without the 
symbol * as satisfiable and the formulae in ∗  with 
the symbol * as unsatisfiable. 

For the sake of convince, it can be assumed 
without loss of generality that all of the concepts 
occurring in the given knowledge base and query are 
transformed in negation normal form (NNF), i.e., that 
negation is applied only to concept names. An arbitrary 
ALC  concept can be transformed to an equivalent 
NNF by pushing negations inwards using a series of de 
Morgan’s laws, the duality between quantifiers and 
double negation elimination, which are guaranteed by 
both the strong and weak satisfaction. For a concept or 
an assertion C , we will use C¬



 to denote the NNF 
of C¬ . For example, the NNF of the concept 

( )R A P B¬ ∀ . ∃ . , where A  and B  are concept 
names, is ( ) ( )R A P B∃ .¬ ∀ .¬ . 
4.1  Constraint System 

Before describing the semantic tableau more 
formally, it is needed to introduce the notion of 
constraint system, which was originally proposed in 
reference [19]. In order to provide an appropriate data 
structure representing constraints such as “ ( )C a  is 
strongly satisfiable” and “ ( )C b  is weakly 
unsatisfiable”, the traditional constraint system is 
adapted, and signed ABox assertions is used to 
represent the constraints in this paper. In order to gain 
the ability of processing acyclic TBox, inclusion 
axioms are included in our constraint system in which 

an inclusion axiom is viewed as a cluster of assertion 
constraints, and is finally transformed to these 
constraints by applying expansion rules. 

Definition 12  A constraint system S  is defined 
as a finite nonempty set of sets of constraints which are 
signed assertions and signed GCIs, i.e., S ≠ ∅  and 

(  )S ∗⊆℘  , where  ( )∗℘   is the power set of  ∗ . 
Initially, a given  -knowledge base Σ = ,   
is translated into a constraint system 

{{ } }S orα α αΣ = | ∈ ∈  . 
Example 10 The initial constraint system 

translated from the knowledge base Σ  in Example 1 
is as follows: 

{{Driver Person PROFILESΣ = ∃ .   
DrivingLicense CONTEXT Position}∃ . ,  
{Traveler (Driver Passenger)    

TO Position} {Traveler( jack)}∃ . , ,  
{ Passenger( jack)}¬ ,  
{ PROFILE DrivingLicense( jack)}}∀ .¬ .  
The satisfiability relation for constraint system is 

defined as follows. 
Definition 13  The strong satisfaction and weak 

satisfaction relations are further extended for constraint 
system as follows, where Lϕ ∈  and S  is a 
constraint system. 

{ }s ϕ∗   iff s ϕ∗   iff s ϕ/   
{ }w ϕ∗   iff w ϕ∗   iff w ϕ/   

s S   iff for every Sβ ∈ , s β   

w S   iff for every Sβ ∈ , w β   
We say S  is satisfiable iff there is a QC 

interpretation   such that ( )s S ∩℘   and 
( )w S S− ∩℘  . 

For every individual Ia N∈  occurring in a 
constraint system S , we call a  explicit if there is a 
constraint on a  in S  that is involved in a single 
constraint set containing only one constraint, and we 
call it implicit if there is no such constraint. For 
example, in a constraint system 

{{ ( ) ( )} { ( )}}S A a R a b B a= , , , , a  is explicit and b  is 
implicit. 
4.2  Expansion Rules 

After obtaining a constraint system from a 
knowledge base, the QC semantic tableau then applies 
it to the so-called expansion rules, which transform the 
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sets of constraints into clauses, then syntactically 
decompose the clauses into literals and generate one or 
more expanded constraint systems with new 
constraints in every step. There are two types of 
expansion rules in the definition of the QC semantic 
tableau. The first type is given in Definition 14 and 
called S-rules, which is to process the constraints 
without the symbol * that are believed to be satisfiable. 
The second type is given in Definition 15 and called 
U-rules, which is to process the constraints with the 
symbol * that are believed to be unsatisfiable. 

Definition 14  The S-rules for QC semantic 
tableau are defined as follows. 
 -rule {( { ( )}) { ( )}S S C D a C aβ→ ∪ − ∪ ,  
( { ( )}) { ( )}}C D a D aβ − ∪  
if  (1) ( )C D a β∈  where Sβ ∈ , and 

(2) {( { ( )}) { ( )}C D a C aβ − ∪ ,  
( { ( )}) { ( )}}C D a D a Sβ − ∪ ⊆/ . 

1 -rule {( { ( )}) { ( ) ( )}}S S C D a C a D aβ→ ∪ − ∪ ,  
if  (1) ( )C D a β∈  where Sβ ∈ , and 

(2) ( { ( )}) { ( ) ( )}C D a C a D a Sβ − ∪ , ∉ . 

2 -rule { ( )}iS S Aα→ ∪ ⊗ ,  
if  (1) 1 2{ , }nA A A Sα = , , ∈  where α  is a clause, 
and 

(2) There is a iA α∈  such that { }iA S¬ ∈


 and 
( )iA Sα⊗ , ∉ . 

3 -rule 1 2{{ }} { }} {{ }}nS S A S A S A→ ∪ , ∪ , , ∪  
if  (1) 1 2{ , }nA A A Sα = , , ∈  where α  is a clause, 
and 

(2) {{ } }i iA A Sα| ∈ ∩ = ∅ . 
 -rule {{ ( )}}S S A C a→ ∪ ¬   
if  1. { }A C S∈ , and 

(2) There is an explicit individual a  such that 
{ ( )}A C a S¬ ∉ . 
∀ -rule {( { ( )}) { ( )}}S S R C a C bβ→ ∪ − ∀ . ∪  
if  (1) ( )R C a β∀ . ∈  where Sβ ∈ , and 

(2) There is an individual b  such that 
{ ( )}R a b S, ∈ , and ( { ( )}) { ( )}R C a C b Sβ − ∀ . ∪ ∉ . 
∃ -rule {( { ( )}) { ( )}S S R C a R a bβ→ ∪ − ∃ . ∪ , ,  

( { ( )}) { ( )}}R C a C bβ − ∃ . ∪  
if  (1) ( )R C a β∃ . ∈  where Sβ ∈ , 

(2) b  is a new individual name, and 
(3) There is no individual i  such that 

( { ( )}) { ( )}R C a R a i Sβ − ∃ . ∪ , ∈  and 

( { ( )}) { ( )}R C a C i Sβ − ∃ . ∪ ∈ . 
Definition 15  The U-rules for QC semantic 

tableau are defined as follows. 
∗ -rule {{ ( ) }} {{ ( ) }}S S C a S D a∗ ∗→ ∪ , ∪  

if  (1) { ( ) }C D a S∗ ∈ , and 
(2) {{ ( ) } { ( ) }}C a D a S∗ ∗, ∩ = ∅ . 

∗ -rule {{ ( ) } { ( ) }}S S C a D a∗ ∗→ ∪ ,  
if  (1) { ( ) }C D a S∗ ∈ , and 

(2) {{ ( ) } { ( ) }}C a D a S∗ ∗, . 
∗ -rule {{ ( ) }}S S A C b ∗→ ∪ ¬   

if  (1) {( ) }A C S∗ ∈ , 
(2) b  is a new individual name, and 
(3) there is no individual i  such that 

{ ( ) }A C i S∗¬ ∈ . 
∗∀ -rule {{ ( )} { ( ) }}S S R a b C b ∗→ ∪ , ,  

if  (1) { ( ) }R C a S∗∀ . ∈ , 
(2) b  is a new individual name, and 
(3) There is no individual i  such that 

{{ ( )} { ( ) }}R a i C i S∗, , ⊆ . 
∗∃ -rule {{ ( ) }}S S C b ∗→ ∪  

if  (1) { ( ) }R C a S∗∃ . ∈ , and 
(2) There is an individual b  such that 

{ ( )}R a b S, ∈  and { ( ) }C b S∗ ∉ . 
We refer to 3 -rule and ∗ -rule as 

nondeterministic rules, since they can be applied in 
different ways to the same constraint system 
(intuitively, they correspond to branching rules of 
tableau). All the other rules are called deterministic 
rules. Among them, we refer to  -rule, 1 -rule, 
 -rule, ∗ -rule and ∗ -rule as rewriting rules, 

2 -rule as resolution rule, and ∀ -rule, ∃ -rule, 
∗∀ -rule and ∗∃ -rule as quantification rules. In 

addition, we refer to ∃ -rule, ∗ -rule and ∗∀ -rule as 
generating rules since they introduce new individuals 
in the constraint system. All the other rules are called 
non-generating rules. 
4.3  The QC Semantic Tableau and QC 

Consequence Relation 
Definition 16  A QC semantic tableau for a 

knowledge base Σ  and a query ϕ ∈  is a tree such 
that 

(1) The root of the tree is labeled by {{ }}S φ∗
Σ ∪ , 

and 
(2) All child nodes are a constraint system 
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obtained by applying expansion rules on their parents. 
This definition is similar to the one for the classical 
semantic tableau in refrences [2, 20]. The major 
differences include: (1) The root of the classical 
tableau is labeled by { }SΣ φ∪ ¬  if the query 

( )C aφ = , or is labeled by { ( )}S C D bΣ ∪ ¬ , where 
b  is a new individual, if the query C Dφ =  ; (2) 
The constraint system of the classical tableau is a set of 
non-signed constraints, while the constraint system of 
the QC tableau is a set of constraint sets. The reason 
causing the differences is that the link between a 
formula and its complement has been decoupled. 

Definition 17  A constraint system is complete iff 
no expansion rule is applicable to it. A complete 
system derived from a constraint system S  is also 
called a completion of S . A constraint system S  
contains a clash iff {{ ( )} { ( )}a a⊥ , ¬ ,  
{ ( ) } { ( ) }}a a S∗ ∗, ¬ ⊥ ∩ ≠ ∅  or {{ } { }}A A S∗, ⊆ , 
where A  is a literal. 

Definition 18  A QC tableau is closed iff all its 
branches are closed. A branch in such a tableau is 
closed iff its leaf node contains a clash. A tableau is 
open iff at least one of its branches is open. A branch is 
open iff its leaf node is complete and does not contain 
clash. 

Now, the QC consequence relation can be defined 
using the QC semantic tableau. 

Definition 19  For a knowledge base with acyclic 
TBox Σ , let Q  denote a consequence relation, 
called the QC Consequence Relation, which is defined 
as follows, where C ∈  are concept names, RR N∈  
is a role name and Ia b N, ∈  are individual names. 

Q A CΣ    iff the QC semantic tableau for Σ  
and A C  is closed; 

( )Q C aΣ   iff the QC semantic tableau for Σ  and 
( )C a  is closed; 

( )Q R a bΣ ,  iff the QC semantic tableau for Σ  
and ( )R a b,  is closed. 

The reasoning tasks formalized in the end of 
Subsection 2.1 can be finished using the QC entailment, 
by checking whether the corresponding QC 
consequence relations hold. 

Example 11  Consider the inconsistent 
knowledge base Σ  in Example 1 and the query 

Person( jack)¬  in Example 9. The root of the 
semantic tableau for Σ  and the query is: 

0 {{ Person( jack) }}S S ∗
Σ= ∪ ¬ = 

{{Driver Person   
PROFILE DrivingLicense∃ .   
CONTEXT Position}∃ . ,  

{Traveler (Driver   
Passenger) TO Position}∃ . ,  
{Traveler( jack)},  
{ Passenger( jack)}¬ ,  
{ PROFILE DrivingLicense∀ .¬  
( jack)} { Person( jack) }}∗, ¬  

A sequence of applications of the expansion rules 
to 0S  is in Appendix A. 

It can be verified that 63S  is a complete 
clash-free constraint system. Hence, the semantic 
tableau for Σ  and the query Person( jack)¬  is open, 
that is, Person( jack)QΣ / ¬ . Corresponding with Q  
in Example 9, this example shows that Q  is 
non-trivializable in the proof-theoretic view. 
4.4  Properties of Quasi-Classical Description 

Logics 
Quasi-classical description logic QC- ALC  

possesses some elegant properties, such as that its QC 
consequence relation is paraconsistent, sound, 
complete and decidable. Some classically logical 
properties are preserved in QCDLs, while others no 
langer holds. Now we discuss those properties. 

Soundness, completeness and decidability are 
three of the most important properties of any formal 
logical system. The following theorem shows the 
soundness and completeness of the QC consequence 
relation. 

Theorem 1  Let Σ  be a knowledge base with 
acyclic TBox and ϕ ∈  a query. QΣ ϕ  iff 

QΣ ϕ . 
Theorem 2  Let Σ  be a finite knowledge base 

with acyclic TBox and ϕ ∈ . QΣ ϕ  can be 
determined in a finite number of steps. In other words, 
the QC consequence relation is decidable. 

Proposition 1  Quasi-classical description logics 
are paraconsistent. 

QCDLs are paraconsistent in the sense that they 
does not allow trivial inferences. That is, it is not the 
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case that any conclusion in the language is entailed by 
a given classical inconsistent knowledge base. It is 
shown by Examples 9 and 11. QCDLs provide a 
paraconsistent logical fundament for the OWL, so that 
knowledge reasoning in the Semantic Web no longer 
needs the usually unachivable requirement for 
consistency. 

Proposition 2  The QC semantic tableau 
collapses to a classical semantic tableau if the 
following rule are added to the expansion rules, 

∗¬ -rule  {{ }}S S φ→ ∪ ¬


 
if  1. { } Sφ∗ ∈  where φ  is an assertion, and 

2. { } Sφ¬ ∉


. 
and we can use the classical definition for clash (i.e. a 
constraint system contains both { }A  and { }A¬  for a 
literal A ). 

This proposition shows that the QC semantic 
tableau can be viewed as a special form of the classical 
tableau for DLs. If the given knowledge base is 
consistent, then all expansion rules in the QC semantic 
tableau and ∗¬ -rule can be applied in a classical way 
to finish classical reasoning tasks. 

Proposition 3 Reflexivity, monotonicity, and 
consistency preservation hold in QCDLs. However, 
transitivity fails in any tautology cannot be inferred 
from the empty knowledge base. 

5  Related Work 
In this section, we provide a detailed comparison 

with related work on paraconsistent reasoning in 
description logics. 
5.1  Comparing with Four-Valued Description 

Logics 
Four-Valued Description Logics stems from 

Belnap’s four-valued logic and have been studied in 
many literature[9,11]. The similarities and differences 
between QCDLs and FVDLs resemble those between 
QCL and Belnap’s four-valued logic respectively. 

We first consider their similarities. Of course, 
they are both paraconsistent. In model-theoretical view, 
it is an idea shared by several paraconsistent logics to 
decouple the link between a formula and its negation at 
the level of model to obtain a paraconsistent semantics. 
So are QCDLs and FVDLs. For the four-valued 

semantics of ALC4  defined in reference [9], we 
show its correspondence with our quasi-classical 
semantics through the following definition. 

Definition 20  Let   be a quasi-classical model 
and 4  a four-valued model. 4  is a corresponding 
model for   iff 4 4( )I Ia proj A+∈  if ( )A a+ ∈  , 

4 4( )I Ia proj A−∈  if ( )A a− ∈   and 
4 4 4( ) ( )I I Ia b proj R+, ∈  if ( )R a b+ , ∈  . 

For the general concept inclusion axioms in TBox, 
ALC4  allows three kinds of inclusions. 

Now, let us consider the differences. In 
model-theoretic view, QCDLs have a stronger 
semantics because the quasi-classical semantics define 
more restriction, in addition to decoupling the link 
between a formula and its complement, for strong 
satisfaction of disjunction. Those constraints ensure 
that if the negation of a disjunct holds in a strong 
model, then the resolvent should also hold in the model. 
Therefore, the number of strong models of QCDLs is 
not greater than that of FVDLs, and the number of 
weak models of QCDLs is actually equal to that of 
FVDLs because the additional restriction for semantics 
of disjunction is not defined in weak satisfaction. Even 
those numbers may be infinite. If all inclusion axioms 
in a knowledge base are considered material inclusion 
axioms, the following proposition holds. 

Proposition 4  Let Σ  be an ALC -knowledge 
base. For all quasi-classical model  , if s Σ   
holds then there is a corresponding four-valued model 

4  for   such that 4 4 Σ   holds. Moreover, For 
all quasi-classical model  , w Σ   holds if there is 
a corresponding four-valued model 4  for   such 
that 4 4 Σ   holds. 

Since QCDLs have reduced strong models, a 
knowledge base often has more non-tautological 
inferences in QC semantics than those in four-valued 
semantics, and it is never less. Consider an ABox 

{ ( ) ( )}A B a A a= ,¬   for an example, ( )B a  is an 
inference of   in QC semantics, but not in 
four-valued semantics. Furthermore, the inferences of a 
knowledge base in QC semantics almost coincidering 
with in classical DLs when the knowledge base is 
classically consistent. In fact, only tautologies and 
formulae containing tautologies cannot be inferred. 
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However, tautologies contain no information 
whatsoever since a knowledge base is often used as a 
domain knowledge model. 

In proof-theoretic view, it reflects FVDLs’ weaker 
semantics that they cannot support disjunctive 
syllogism, modus ponens and modus tollens, all of 
which are supported by QCDLs. 
5.2  On Quasi-Classical Semantics of Description 

Logics 
When the primary version of this work was being 

peer-reviewed, we noticed that another paper on 
quasi-classical semantics of description logics was 
accepted by another conference reference [12]. After 
publishing of that work, we carefully read it and found 
that there may be some serious glitches in it. We will 
discuss them in this subsection. 

First, the quasi-classical semantics of ALC  
defined in reference [12] leads to a contradiction. In 
both QCL and our work on QCDLs, the resolution rule 
applied only to clauses in the definition of strong 
satisfaction[7,14-16]. This restriction is necessary. 
However, the strong interpretation in reference [12] 
weakens this restriction to arbitrary concept. We 
demonstrate on the following example that the strong 
interpretation defined in reference [12] leads to a 
contradiction. 

Example 12  Let C , D  and E  be ALC  
concepts, and ({ } )II a= ,⋅  a strong interpretation 
defined in reference [12] such that IC =< ∅,∅ > , 

{ } { }ID a a=< , >  and { }IE a=< ,∅ > . By the 
definition in reference [20], ( ( ))IC D E =   { }a< ,  
∅ >  but (( ) ( ))IC D C E =< ∅,∅ >   . It 
contradicts distributivity of disjunction. 

Second, corresponding with the problem in 
semantics, the tableau algorithm defined in reference 
[12] also does not restrict the applying of the resolution 
rule to clauses. This leads a similar contradiction 
illustrated above. 

In addition, even if the above glithes are repaired, 
the method proposed in reference [12] only can deal 
with the problem of instance checking. The 
paraconsistent reasoning with inconsistent knowledge 
base contained concept inclusions are not discussed in 
reference [12]. 

6  Conclusion and Future Work 
In this paper, we have proposed the 

quasi-classical description logics which can achieve 
paraconsistent reasoning in DLs. The semantics and 
the sound, complete and decidable QC semantic 
tableau for QCDLs have been elaborately introduced. 
This work provides a novel approach for 
paraconsistent reasoning with ontologies represented in 
OWL in the Semantic Web. We have provided a 
comparison between QCDLs and other key 
paraconsistent DLs to explain that QCDLs are more 
appropriate than other paraconsistent DLs for 
applications in the Semantic Web. 

Of course, it remains much work to be done. In 
order to make our approach more practicable, it is 
obvious to optimize the tableau calculus. Secondly, we 
have to refine the decidability theorem to provide a 
precise complexity analysis. Moreover, we intend to 
extend the QC semantics and QC semantic tableau to 
more expressive DLs to cover more parts of OWL-DL. 
In addition, we are developing a paraconsistent OWL 
reasoner based on classical OWL reasoner Pellete 
using our approach. 
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