
 第 38 卷 第 5 期 电 子 科 技 大 学 学 报 Vol.38 No.5
 2009年7月 Journal of University of Electronic Science and Technology of China Sep. 2009

On Invariance of Dynamic CTL Model Checking in Iterative

Design of Moore Machine-based System

LI Shao-rong1, YANG Shi-han2, and WU Jin-zhao1
(1. School of Optoelectronic Information, University of Electronic Science and Technology of China Chengdu 610054;

2. Chengdu Institute of Computer Applications, Chinese Academy of Sciences Chengdu 610041)

Abstract Model checking is a promising approach to verifying safety properties of trusted computing

systems in the design phase of system-level. Dynamic model checking is the model checking in which the model
changes frequently along the design process. A serious problem for dynamic model checking is that the cost of
re-checking is too expensive due to model being changed trivially, so a key issue of the problem is to seek
invariance in order to avoid the checking repeatedly. An invariance is a true predicate that will remain true
throughout a sequence of model checking. In this paper, a formal framework of dynamic model checking is
constructed, and an invariance theory is proposed based on an iterative design process of flow control oriented
systems described by Moore machines. It is proved that some non-trivial computation tree logic (CTL) properties
can be preserved in the iteration.

Key words computation tree logic; dynamic model checking; invariance; iterative design; Moore
machine

Moore机表示的系统迭代设计动态CTL模型检验的不变性研究

李绍荣1，杨世翰2，吴尽昭1
(1. 电子科技大学光电信息学院 成都 610054; 2. 中国科学院成都计算机应用研究所 成都 610041)

【摘要】模型检验是系统级设计中验证可信计算系统安全性性质的有效方法。动态模型检验是模型随设计过程而变化的

模型检验，动态模型检验过程中遇到的最严重问题之一是模型变化所带来的重复检验代价太高。因此，寻找不变性以避免重

复检验显得尤为重要。不变性是一种贯穿系列模型检验而保值为真的性质。该文构建动态模型检验的形式化框架，进而提出

基于Moore机描述的流控制系统迭代设计过程的不变性理论，该系统是一种嵌入式控制系统，在可信通信中用以处理数据转换，

最后展示了若干非平凡CTL性质在迭代过程中的可保持性。
关 键 词 计算树逻辑; 动态模型检验; 不变性; 迭代设计; Moore机
中图分类号 TP301.6 文献标识码 A doi:10.3969/j.issn.1001-0548.2009.05.026

Received date: 2009 − 08 − 05
收稿日期：2009 − 08 − 05
Foundation item: 863 Program(2007AA01Z143)
基金项目：国家863计划(2007AA01Z143)
Biography: LI Shao-rong, born in 1964, male, Professor, research interests include verification and evaluation of complex systems.
作者简介：李绍荣(1964 −)，男，教授，主要从事复杂系统验证与评估技术方面的研究.

1 Introduction
Model checking is an automated formal

verification technique that, given a finite-state model
of a system and a formal property, systematically
checks whether this property holds for a given state in
that model. Model checking has been successfully
applied to integrated circuit design and verification in
last two decades. In some critical system (such as
trusted computing system) designs, model checking

could be the best formally method to apply for
verification. But model checking of complex system is
very expensive in time and space. Nowadays iteration
is a common design strategy in modern system design
and development, such as flow control oriented
systems (FCOS)[1-2], which is a kind of embedded
control system stressing to handle data transformation
in trusted computing system, and whose model is
described by Moore machine. Iterative design is a
system design methodology based on a cyclic process

 电 子 科 技 大 学 学 报 第 38 卷 670

of prototyping, testing and verification, analyzing, and
refining an application in progress. In detail, the
iterative design process consists of 4 stages[3]:
(1) definition of the specifications and design
development; (2) production (model, mockup,
prototype and product); (3) Verification / testing; (4)
analyzing and evaluation. The four stages work
through successively. At the end of each cycle the
result is analyzed and evaluated. This serves as an
input for the next cycle. In the iterative design process,
it is very expensive and impractical to use the static
model checking (the general model checking)
approach along iterative process due to the high cost of
re-checking.

In the static model checking framework, the
system is assumed to be fixed. But this assumption is
usually untenable in real iterative designing situation,
in which model checking is embedded and models are
subject to change frequently[4].

The dynamic problem is usually involved in
model checking. Dynamic model checking is the
problem of the model checking in which the model
changes frequently along the designing process. How
can the property be re-verified effectively when the
model changes? To solve this, the following two basic
questions have to be considered: (1) how can it be
ensured that the verified property still holds after the
model changes, and (2) how can a new property be
verified artfully and effectively when model changes,
For the first question, if there is a sequence of models
of a system, says 0 1, , , nM M M M= , where M is the
final model, it is of great benefit to establish
implication relation 1i iM Mφ φ+→ , since the cost
of re-verifying is usually much higher than the cost of
proving the implication relation. For the second
question, if some properties of the system are added or
changed according to the requirement with the
proceeding of development process, information
verified in the anterior iterative phase may be possibly
reused in verifying of current iterative phase.

In recent years, the investigation on dynamic
problem of model checking focuses on restricting
changes of the model or re-checking adaptively. If the
development process is thought of a linear incremental

design, where a final model M is built through a
successive sequence of models 0 1M M⊆ ⊆

nM M⊆ = , such that 1iM + somehow
incorporates iM and enriches it with additional state or
behavior, then incremental model checking
methodology can be employed [5-6]. For a certain
property, $,$ iMφ φ implying 1iM φ+ means that
the property φ remains unchanged during
incremental design, iM φ implying 1iM φ+
means that the refutation of φ still remains. These
results are valuable when the verification of 1iM φ+
costs much more than the effort to prove iM φ →

1iM φ+ . This incremental situation, however, is not
always correct[7]. In iterative design processes, changes
to model are almost arbitrary, which could be
incremental or decremental. Reference [8] exploit the
verification results to assist automatically learning the
required updates of the model, then accelerate model
rechecking processes when model changes. In addition,
reference [9] gives a framework of dynamic model
checking by applying game theory, and analyzes its
complexity.

In these works, however, a key concept invariance
is neglected. Moreover there are not works on model
checking embedded in iterative design process. There
is a very important issue on dynamic model checking,
i.e. how can we reuse the information verified in the
anterior iterative phase? The invariance can
dramatically avoid the verifying repeatedly. If the
invariance of dynamic model checking can be found,
the re-checking is not an obstacle any more and model
checking embedded in the iterative design process is
practical in the industry. In this paper, we focus on
preservation of computation tree logic (CTL)
properties in model checking along iterative process
based on FCOS design. We construct a formal
framework of dynamic model checking, and propose
an invariance theory of dynamic model checking, and
prove that properties expressed by CTL formulae are
preserved along the iterative design process in the
theory. We show that if some properties hold in some
model iM , then they still hold in the successive
model ()jM j i> . Our approach is better because that
the monotonic increment assumption of model

 第5期 李绍荣 等: Moore机表示的系统迭代设计动态CTL模型检验的不变性研究 671

sequence is not required anymore, the limit (in
reference [5], the new behaviors added must not
override the previous ones) of system behavior
evolving is relaxed, and the new valid properties are
also expediently discovered in the theory. This theory
is an extension and a supplement of the classical CTL
case. This also provides a supplement that simplifies
the design process by carrying on verification as soon
as they involve instead of having to proceed to the later
complex model, where model checking procedure
usually has to face the notorious state space explosion
problem.

In the rest of the paper, Section 2 reviews the CTL
model checking. We formalize the dynamic problem of
model checking in Section 3. Section 4 formalizes the
iterative design process of Moore machine-based
system. A fundamental theory on invariance of
dynamic model checking is constructed in Section 5.
Conclusion and future works are presented in Section 6.

2 CTL Model Checking
Model checking problem could be simply

described as:
Given a simplified mode of a system, test

automatically whether this model meets a given
specification.

CTL model-checking is an automatic technique
for verifying properties expressed in a propositional
branching time temporal logic called computation tree
logic (CTL). The system is defined by a Kripke
structure, and properties are evaluated on a tree of
infinite computations produced by the model of the
system. The standard notation ,M s p indicates that
a formula p holds in a state s of a model M. If a
formula holds in the initial state, it is considered to
hold in the model.

Definition 1 (Kripke structure) A Kripke
structure is a five-tuple:

0, ,AP, ,K S S L R= 〈 〉

where S is a finite set of states, 0S S⊆ is the set of
initial states, AP is a finite set of atomic propositions.

0 1 |AP| 1, , ,L l l l −= is a vector of | AP | functions.
Each function defines the value of exactly one atomic
proposition; for all 0 | AP |i≤ ≤ we have :il S → ,

{true, false}= ; for all s S∈ , we have that ()il s is
true if and only if the atomic proposition associated to

il is true in s, and R S S⊆ × is the transition relation.
A computation of system is an infinite sequence

of states, where each state is obtained from the
previous state by some transition. Paths in a Kripke
structure model computations of the system.

Definition 2 (Path) A path in a Kripke structure

0, ,AP, ,K S S L R= 〈 〉 is an infinite sequence of states

0 1 2s s s , such that 1(,)i is s R+ ∈ for all 0i≥ , and

0 0s S∈ .
For a Kripke structure 0, ,AP, ,K S S L R= 〈 〉 and

a state s S∈ , there is an infinite computation tree with
the root labelled s, such that (,)s s′ ′′ is an edge in the
tree if and only if (,)s s R′ ′′ ∈ . This tree is obtained by
unfolding the Kripke structure at state s. The features
of the computation tree could be captured by CTL
logic language.

Let f, g be CTL formulae, ,¬ ∧ boolean logic
operators, A an universal quantifier, E an existent
quantifier, and , , ,X F G U temporal operators. The
syntax of CTL formulae[10] is given as follows:

• Every atomic proposition is a CTL formula;
• If f and g are CTL formulae, then so are

, (), , , (), ().f f g AXf EXf A fUg E fUg¬ ∧
The other operators (, , , , ,AF EF AG EF∨ →) are

viewed as being derived as usual from the following
equations:

()

(true)
(true)

(true)
(true)

f g f g
f g f g
AFg A U g
EFg E U g
AGf E U f
EFg S U f

∨ = ¬ ¬ ∧ ¬
→ = ¬ ∨

=
=
= ¬ ¬
= ¬ ¬

Let K be a Kripke structure, ,f g CTL formulae,
s S∈ and ,i j ∈ , a set of natural numbers. The
interpretation of a CTL formula[10] with respect to a
Kripke model K is given as following:

,K s p iff ()p L s∈
,K s f¬ iff s f
,K s f g∧ iff s f and s g

0,K s AXf iff
for all paths 0 1(, ,)s s ,

1s f

0,K s EXf iff for some path 0 1(, ,)s s ,

 电 子 科 技 大 学 学 报 第 38 卷 672

1s f

0, ()K s A fUg iff
for all paths 0 1(, ,)s s ,
for some , ii s g and
for all , jj i s f<

0, ()K s E fUg iff
for some path 0 1(, ,)s s ,
for some , ii s g and
for all , jj i s f<

3 Dynamic Model Checking
Framework
Static model checking is to compute M φ

only once, where M is usually the final model in design
process. The model M is often very complex and the
model checking process is incidental to meet the state
space explosion problem. However, the designer often
wants to verify the model when it does not come to the
end, because he thinks intuitively that some properties
should be verified and that the model is not so complex
yet. The frequency of re-verification is wanted to be
reduced when the model improves. The designer even
wants not to re-verify some properties when the model
evolves. But now the fact is that the re-verifying /
regressive-testing has to be made at each step in the
iterative design process. Those are involved in the
problems of dynamic model checking. How can the
designer check / recheck the model when it does not
evolve into the end? How can the cost of model
checking / rechecking be reduced effectively when the
model becomes complex. Let’s investigate the process
of dynamic model checking at first.

Dynamic model checking is actually an iterative
process of model checking, which is embedded in the
iterative design process:

(1) Checking M φ ;
(2) Correcting or improving model M;
(3) Going back to 1.
The reason why correcting or refining model M is

that system designs have to be corrected or refined
according to the requirements along the iterative
design process. Intuitively, dynamic model checking
could be seen as a sequence of static model checking
based on the natural arithmetic structure, which is
described as follows.

Given a relational structure , the universe,

denoted | | , is an initial segment of the natural
numbers, that is, | | 0,1, , 1n= − , where n ∈ ,
 is the set of natural numbers. In addition, we
assume that the structure is provided with the built-in
predicate ≤ (with the natural interpretation) and the
built-in predicate (2)BIT , which is used to query the
binary representation of the numbers building the
universe. Moreover, we assume that the structure has at
least two elements, and we identify 0 with false and 1
with true. This kind of structures will be referred to as
arithmetic structures. Given a relational vocabulary τ ,
we write Struc[]τ for the set of all arithmetic
structures with vocabulary τ (that is, { ,BIT}τ ≤)
and Struc []n τ for all such structures with n elements.

A dynamic problem is usually specified[11] by (1)
a set of operations that can be used to build instances
of the problem, (2) a set of all possible solutions to the
instance represented by a sequence of those operations,
and (3) an interpreting with the solution set on the
sequence.

As far as dynamic model checking is concerned,
the model M of a system, a Kripke structure, is to be
changed, but the property, specified by formula φ , is
assumed to be fixed. So, (1) the instance of dynamic
model checking is one static model checking, and the
operations of the instance(changes of the model) are
insertion and deletion of states and relabelling of the
states, that is, formally described as:

{Insert,Delete} {SetVar A }Pmc
U Uφ∑ ⊆= ∪ ∣

where mcφ∑ is the vocabulary of operations, and we
also use mc

n
φ∑ to denote the set of operations for

constructing the instance of the problem with size n,
and we use *()mc

n
φ∑ to denote transitive closure of

mc
n

φ∑ . The meanings of Insert is an operator of
inserting states into the Kripke structure. The meaning
of Delete is an operator of deleting states from the
Kripke structure, and the meaning of SetVar ()U i is
that the ith state of the Kripke structure gets label U,
AP is the finite set of atomic propositions. (2) The
solution to the model checking instance is represented
by a Boolean constant, v (for verified) , so the solution
set is

{ }, {true, false}mc v vφτ = ∈

and (3) an interpretation to the sequence of operations

 第5期 李绍荣 等: Moore机表示的系统迭代设计动态CTL模型检验的不变性研究 673

is a partial function:
:mc mc

n us uφ φ

where () , Struc []mc mc mc
n u nu φ φ φ∑ τ∗∈ ∈ , and mc

ns vφ
if and only if φ holds in the Kripke structure with
state set{0,1, , 1}n − , with the initial state 0 and with
edge relation (transition relation) labeling according to u.

So dynamic model checking is formally given by
Definition 3 (Dynamic model checking)

Dynamic model checking (DMC) is formally described
as a 3-tuple:

DMC , ,mc mc mc
nsφ φ φ∑ τ= 〈 〉

where mcφ∑ is a set of operators that can be used to
change the model, mcφτ is a set of solution to model
checking, i.e. {true, false} . It is true when M φ
holds, and false when others, and mc

ns φ is a partial
function defined above, says how a sequence of
operators maps to the solution set of model checking.

Intuitively, dynamic model checking is a
successive sequence of static model checking during
system design process. It comprises three essential
parts, a stepwise improving sequence of the system
model, a sequence of solution to model checking
problem for the property and every model among the
model sequence, and a relation function between the
model sequence and the solution sequence. Of course,
an invariance of dynamic model checking is a key
issue. The invariance is defined as follows:

Definition 4 (Invariance) In dynamic model
checking, an invariance is a predicate that, if holds,
will remain holds throughout a sequence of static
model checking, where the predicate (M φ) is
satisfiable relation between a model M and a property
φ as usual.

According to the different set of operators (mcφ∑),
different kinds of problem of dynamic model checking
could be formalized. In this paper, the iterative FCOS
design is considered. Let {Insert,Delete}mcφ∑ = ∪

(1){SetVar }U , and dynamic model checking embedded
in iterative system design process is formally defined
as above.

4 Formalization of Iterative Design
Process
In this section, we describe formally the

system-level design process of FCOS, whose model is
described by Moore machines. The FCOS is composed
of components. A component is viewed as a control
part driving a data path, and a component presents an
interface made of directed typed signals. A component
could be added into the system or be deleted from the
system or be revised by the design engineers during
iterative design process. A component could be usually
modeled by a complete and deterministic synchronous
Moore machines. So changes of the system along
iterative design process could be seen as changes of
Moore machines, into which states are added, or from
which states are deleted. For the formal description of
a component, signal and configuration are key
concepts.
4.1 Configuration and Component

Signal is the basic concept in the field of digital
design. A signal is a time-varying or spatial-varying
quantity. In FCOS design, the signal is defined as
follows.

Definition 5 (Signal) Each signal is defined by a
variable name s and an associated finite definition
domain Dom()s .

The value of all signals at a special moment is
formed as a configuration of the component. The
configuration expresses the state of the component at
that point.

Definition 6 (Configuration) Let E be a set

1 2, , , nE s s s= of signals. A configuration ()c E is a
conjunction of the associations: for each signal in E,
one signal associates one value of its definition domain.
The set of all configurations ()c E , named ()C E ,
is 1 2DoDom() () Do)m m(ns s s× × × .

Sometimes we do not consider all signals at a
moment, and we are only interested in part of them.
The value of that part of signals at a moment could be
seen as the projection of a configuration.

Definition 7 (Projection) A projection of a
configuration ()c E on the ith signal is a
function (()) , Dom(),i i i i ip c E v v s s E= ∈ ∈ .

Moreover, we denote 1 2(()) (, , ,),I mp c E v v v=
for 1 ,k m≤ ≤ Dom(),k kv s∈ ,ks I I E∈ ⊆ as
projection of a set I of signals, and denote (())ip c E =

1 2 1 1(, , , , , ,)i i nv v v v v− + , Dom(),j jv s∈ j i≠ as a

 电 子 科 技 大 学 学 报 第 38 卷 674

sub-configuration without ith signal participating in.
We also denote (())Ip c E as a sub-configuration
without set I of signals participating in, and denote

(())Ip C E as a set of all sub-configurations without
set I of signals participating in.

We consider applying changes to a component

iW to evolve the next different component 1iW + in
the sequence of components, where iW refers to the
component resulting from the ith successive changes.
At first, a component could be defined as a complete
and deterministic synchronous Moore machines by
concepts described above.

Definition 8 (Component) A component

0
, , , , ,i i i i i i iW S I O T L s= 〈 〉

is described as a deterministic and complete Moore
machine, where iS is a finite set of states, iI is a
finite set of input signals with their finite definition
domain, iO is a finite set of output signals with their
finite definition domain, () :i i i iT S C I S⊆ × × Finite
set of transitions, , (),i is S c C I∀ ∈ ∀ ∈ ! . .is S s t′∃ ∈
(, ,) is c s T′ ∈ (!∃ means there exists exactly one),

0i is S∈ is the initial state, and 0 | | 1, ,
ii OL l l −= is a

vector of generation functions, and each function
defines the value of exact one output signal in each
state; for all output signal jo , 0 | |ij O<≤ , we
have : Dom()j i jl S o→ . Applying the vector of
generation functions to a given state of iS produces a
configuration ()ic O .
4.2 Changes of the Component

A change is a set of modifications applied to a
component’s architecture for getting a new component
with more correctness during the iterative design
processes. It reflects the occurrence of a new event at
the component’s interface. The new event affects the
component by means of two basic ways, either just
addition or just deletion of behaviors and a set of states
and output signals. The new event is modeled by the
appearance of a changed set of input signals with their
definition domain. The set of all configurations
corresponding to the changed input signals is split into
two disjoint sets representing that the changed event is
active or not.

Definition 9 (Event) An event e to component

iW is a triple

act qt, (), ()e I C I C I= 〈∆ ∆ ∆ 〉

where I I I+ −∆ = ∪ , I+ is the set of added input
signals with their definition domain, I− is the set of
deleted input signals, I I+ −∩ = ∅ , i.e. signal name
should not be reused. If I− ≠ ∅ then some input
signals have been deleted. Assuming domain of all
signals is{0,1} , if a signal is I−∈ and (()) 1ip c E = ,
then configuration ()c E should be already deleted,
and configurations ()c E should be changed
into (())ip c E . When some configurations are deleted,
(i.e. some edges of the Moore machine have been
deleted) some states maybe have zero in-degree, so
these states should be deleted from the Moore machine
of iW .

act ()C I∆ is the set of configurations representing
the occurrence of the changed event. If one such
configuration occurred, the event would be said to be
active.

qt ()C I∆ is the set of configurations representing
the absence of the changed event. If one such
configuration occurred, the event would be said to be
quiet.

There are two kinds of basic event, addition event
and deletion event.

Definition 10 (Addition Event) An event e is an
addition event, denoted ADDe , if I I+∆ = in above
definition of event e.

Definition 11 (Definition Event) An event e is a
deletion event, denoted DELe , if I I−∆ = in above
definition of event e.

Obviously, we have act qt() ()C I C I∆ ∪ ∆ =
()C I∆ and act qt() ()C I C I∆ ∩ ∆ = ∅ .

By means of the concept of events, the change of
a component is formally defined as follows.

Definition 12 (Change) A change to a
component iW is a four tuple:

, , ,iW E T O∆ = 〈 ∆Σ ∆ ∆ 〉
where E is the set of events described above, ∆Σ is
the set of changed states, T∆ is the set of changed
transition, and O∆ is the set of changed output
signals and their definition domain.

There are two basic changes to component iW ,
i.e. increment and decrement. If only addition events
impose on iW , we say an incremental change to it. If

 第5期 李绍荣 等: Moore机表示的系统迭代设计动态CTL模型检验的不变性研究 675

only deletion events impose on iW , we say a
decremental change to it. If both addition and deletion
events occur to iW , we say that there is a compositive
change (or general change) to iW .

Definition 13 (Increment) An incremental
change to a component iW is a four tuple:

ADD , , ,INC e T OΣ + + += 〈 〉
Where ADDe is the additional event described above,
Σ + is the set of new reachable states, iSΣ + ∩ = ∅ ,

(()) (()i i i iT S C I I S C I IΣ+ + + +⊆ × ∪ × ∪ × ∪ ×)Σ + ∪
(())i iS C I I Σ+ +× ∪ × (())i iC I I SΣ + +∪ × ∪ × , and O+
is the set of new output signals and their definition
domain, with act ()C O+ , the set of configurations
representing the activation of the output, and qt ()C O+ ,
and the set of configurations representing the
non-activation of the output. The output functions
associated to O+ return a configuration in qt ()C O+
for all states in iS

Definition 14 (Decrement) A decremental
change to a component iW is a four tuple:

DEC , , ,e T OΣ − − −= 〈 〉

Where DELe is the deletional event described above,
Σ − is the set of states deleted by event DELe ,

\ (\) \i i iT S C I I SΣ Σ− − − −⊆ × ×� � � , where \iS Σ −� is a set
difference of iS and Σ − , \iI I− a set difference of

iI and I− . () (())\i iIC I I p C I
−− = , and O− is the set

of output signals deleted, iO O− ⊆ .
A component 1iW + is obtained by applying

changes to a component iW . There are three cases by
definition above, i.e. incremental change, decremental
change and compositive change. There is a simulation
relation between two Moore Machines when we
consider the relation of model checking problems
between iW and 1iW + .

Definition 15 (Simulation relation) Let M and
M ′ be two Moore Machines with I I ′⊆ and
O O′⊆ , 0s S∈ (resp. 0s S′ ′∈). A relation
H S S ′⊆ × is a simulation relation from 0(,)M s to

0(,)M s ′′ if and only if the following conditions hold:
1) 0 0(,)H s s ′ ;
2) for all s and 's , (,)H s s′ implies: (1) the

projection of ()L s′ ′ onto O′ is equal to ()L s , (2) for
every p such that (, (),)s C I p T∈ , there exists p′
(, (),)s C I p T′ ′ ′ ∈ and (,)H p p′ .

With this simulation relation we have
Theorem 1 1 1(,)i iW s+ + simulates (,)i iW s , if 1iW +

is obtained from iW by only applying incremental
changes.

Proof: We build a binary relation ρ between the
states of two consecutive components iW and

1iW + ,such that 1 : (, ,)i i iS S s c p Tρ +⊆ × ∀ ∈ and

1(, ,) is c p T +′ ′ ′ ∈ , we set (,)s s ρ′ ∈ iff s s′ = and
_ , _ ()qtc c e qt e qt C I+′ = ∧ ∈ . By the construction,

ρ is a simulation relation.
Theorem 2 (,)i iW s simulates 1 1(,)i iW s+ + , if 1iW +

is obtained from iW by only applying decremental
changes.

Proof: We build a binary relation ρ between the
states of two consecutive components 1iW + and iW ,
such that 1 1: (, ,)i i iS S s c p Tρ + +⊆ × ∀ ∈ and
(, ,) is c p T′ ′ ′ ∈ , we set (,)s s ρ′ ∈ iff s s′= and

()Ic p c
−

′= . By the construction, ρ is a simulation
relation.
4.3 Translation into Kripke Structures

Using the framework of dynamic model checking
of flow control oriented system design given above, we
can interpret insert and delete operators in operational
set (mcφΣ) based on the changes defined above, and
the input configurations that label the transitions by the
Moore machine are incorporated into the states in a
Kripke structure (resp. SetVar operator).

It is easy to deduce a Kripke structure from a
given component iW by the following definition.

Definition 16 (Deduce Kripke structure) Given a
component iW , the corresponding Kripke structure
can be obtained as follows:

() (),0 () () ()() , ,AP , ,
i i i i ii K W K W K W K W K WK W S s L R= 〈 〉

Where () ()
iK W i iS S C I= × , (),0 ()

iK W i is s C I= × ,

()AP
iK W i iI O= ∪ ,

0 | | 0 | |() 1 1{ , , } { , , }
i I Oi iK W I I O IL l l l l− −= ⋅

is a vector of ()| AP |
iK W function, and is vector

concatenation, and () () ()i i iK W K W K WR S S⊆ × and

() ()(,) , (,)
i ii K W i K Ws c S s c S′′∀ ∈ ∀ ∈ , ((,),is c

()(,))
ii K Ws c R′′ ∈ iff (, ,)i is c s T′ ∈ .

1iW + is produced from iW by applying change
operators defined above. 1()iK W + is considered to be
produced from ()iK W by applying some operators
in mcφΣ , although it is not in fact. We are interested in

 电 子 科 技 大 学 学 报 第 38 卷 676

whether a CTL specification formula φ still holds or
not in 1()iK W + if it was verified previously in ()iK W .

5 Invariance of Dynamic Model
Checking
Some implications between the Kripke structures

deduced from the components, which are in different
phases of the iterative FCOS design process, show the
invariance in this iterative dynamic model checking.
Suppose component 1iW + is changed from component

iW by applying change events, ()iK W and 1()iK W +
are the Kripke structures deduced from iW and 1iW +
respectively. During the design processes mentioned
previously, we investigate whether every CTL formula
holds in component iW amd in the successive
component 1iW + . At first, relationships between

()iK W and 1()iK W + are observed by the following
two definitions.

Definition 17 (Enrichment relation) For all
states (,) ()it s c K W= ∈ , if there exist (,)t s c′ ′ ′= and

1(,) ()it s c K W +′′ ′′ ′′= ∈ such that (1) ,s s c′ ′= =
_ qtc e∧ and(2) , _ acts s c c e′′ ′′= = ∧ , where

qt act_ qt (), _ act ()e C I e C I+ +∈ ∈ , then t′ and t′′ are
said to enrich t, and 1()iK W + is said to enrich ()iK W .

Definition 18 (Impoverishment relation) For all
states (,) ()it s c K W= ∈ , if there exists

1(,) ()it s c K W +′ ′ ′= ∈ such that , ()Is s c p c
−

′ ′= = , then
t′ is said to impoverish t, and 1()iK W + is said to
impoverish ()iK W .

Then simulation relations between iW and 1iW +
can deduce relationships between ()iK W and

1()iK W + . This is demonstrated by the following
theorems (easy to prove them by definition of
simulation relations).

Theorem 3 If 1 1(,)i iW s+ + simulates (,)i iW s
by applying an incremental change to iW , then

1()iK W + enriches ()iK W .
Theorem 4 If (,)i iW s simulates 1 1(,)i iW s+ +

by applying a decremental change to iW , then

1()iK W + impoverishes ()iK W .
So the invariance of dynamic model checking in

the iterative design process of FCOS can be described
by the following two theorems, it is easy to prove these
theorems by induction on the structure of CTL

formulae and semantics of CTL. The property,
expressed by a kind of CTL formulae, can be preserved
in the iterative design process, and the verified
information on counter example can be reused in the
verifying of current iterative phase.

Theorem 5 1(), (),i iK W s K W sφ φ+ ′→ with
enrichment relation, if a CTL formula φ obtained by
applying recursively the rules of CTL formulae: (1)
every atomic proposition is a CTL formula, (2) if f
and g are CTL formulae, then so are ,f¬
(), , ()f g EXf E fUg∧ .

Proof: By induction on the structure of CTL
formulae, let q be an atomic proposition, ,f g be two
CTL formulae, 0s (resp. 0s ′) be the initial state in

()iK W (resp. 1()iK W +).
• qφ = . (),iK W s q , so () ()

iK Wq L s∈ . By
addition event to iW , we have

1()_ ()
iK Wq e qt L s
+

′∧ ∈ ,
so

1() ()
iK Wq L s
+

′∈ , i.e. 1(),iK W s q+ ′ .
• f gφ = ∧ . By the semantics of CTL formulae,

(),iK W s f and (),iK W s g , then () ()
iK Wf L s∈

and () ()
iK Wg L s∈ . Because s′ enriches s, so

1()_ ()
iK Wf e qt L s
+

′∧ ∈ and
1()_ ()

iK Wg e qt L s
+

′∧ ∈ ,
so

1() ()
iK Wf g L s
+

′∧ ∈ , i.e. 1(),iK W s f g+ ′ ∧ .
• EXfφ = . Assume that 0 1, ,s s∃ , 1s f ,

then () 1()
iK Wf L s∈ , so

1() 1_ ()
iK Wf e qt L s
+ ′∧ ∈ . Suppose

0s ′ enriches 0s , 1s ′ enriches 1s , , etc. So there is a
path 0 1, ,s s′ ′ , such that

1() 1()
iK Wf L s
+ ′∈ , i.e.

1(),iK W s EXf+ ′ .
The other cases could be proved same.
As for the CTL formulae , ()AXf A fUg , one could

not assure whether they still hold or not in the changed
component 1iW + , because this kind CTL formulae is
universal quantifier path formulae, where we can not
figure out any universal path features only from a part
of the path.

Theorem 6 1(), (),i iK W s K W sφ φ+ ′ → with
impoverishment relation, if a CTL formula φ
obtained by recursively applying the constructive rules
of CTL formulae: (1) every atomic proposition is a
CTL formula, (2) if f and g are CTL formulae, then so
are , (), , ()f f g EXf E fUg¬ ∧ .

The significance of this theorem lies in its
converse-negative proposition:

1(), (),i iK W s K W sφ φ+ ′→

 第5期 李绍荣 等: Moore机表示的系统迭代设计动态CTL模型检验的不变性研究 677

which tells us that a counterexample in the previous
component iW must be a counterexample in the next
component 1iW + changed from iW by applying
deletion event. Moreover, given a formula to be
verified on a model, if we can find a decremental
change of the model (impoverishing it), then the
verification could be applied to the simpler model.

6 Conclusions
We have investigated how to handle dynamic

model checking problems by very special perspective
during iterative design process of Moore machine-base
system, and proposed a theory of invariance on
dynamic model checking embedded in the iterative
design process. The invariance can dramatically reduce
the cost of rechecking.

In the near future, we are interested in finding a
decrement such that a complex model could be
impoverished to a simpler model by applying
decremental changes, then one can verify formulae in
the simpler model according to Theorem 6. And we are
specially paying attention to dynamic problems of
model checking in iterative developing process of
software engineering, in which the dynamic problems
are much frequently encountered. How to reuse the
reserved information that could be obtained from both
previous verifications and changed-events to accelerate
model rechecking processes is another researching
interest of us.

References
[1] HOROWITZ M, STARK D, ALON E. Digital circuit design

trends. Solid-State Circuits[J]. IEEE Journal, 2008, 43(4):
757-761.

[2] RABAEY J M, CHANDRAKASAN A, NIKOLIC B.
Digital integrated circuits: a design perspective[M]. 2nd
edition. [S. l.]: Prentice Hall, 2003.

[3] WYNN D C, ECKERT C M, CLARKSON P J. Modelling
iteration in engineering design. In ICED’07, 2007.

[4] HUTH M. Some current topics in model checking[J]. Int J
Softw Tools Technol Transfer, 2007, 9(1): 25-36.

[5] BRAUNSTEIN C, ENCRENAZ E. Ctl-property
transformations along an incremental design process[J]. Int J
Softw Tools Technol Transf, 2007, 9(1): 77-88.

[6] HELJANKO K, JUNTTILA T, LATVALA T . Computer
aided verification[J]. LNCS, 2005, 3576: 98-111.

[7] GUELEV D P, RYAN M D, SCHOBBENS P Y.
Model-checking the preservation of temporal properties
upon feature integration[J]. Int J Software Tools Technology
Transf, 2007, 9(1): 53-62.

[8] ELKIND E, GENEST B, PELED D, et al. Formal
techniques for networked and distributed systems[J]. LNCS,
2006, 4229: 420-435.

[9] RADMACHER F G, THOMAS W. A game theoretic
approach to the analysis of dynamic networks[J]. Electron
Notes Theor Comput Sci, 2008, 200(2): 21-37.

[10] MCMILLAN K L. Symbolic model checking[M]. Norwell,
MA, USA: Kluwer Academic Publishers, 1993.

[11] KAHLER D, WILKE T. Program complexity of dynamic
ltl model checking[J]. In CSL, 2003, 2803: 271-284.

编 辑 漆 蓉

李绍荣，电子科技大学教授。现任

电子科技大学光电技术工程中心主任；

中国兵工学会光学专业委员会委员；

《光学技术》杂志编委。近五年，在国

际和国内专业刊物以及国际学术会议发

表论文20余篇，被SCI、EI检索10余篇。

先后承担和参与了国家“973”、

“863”、四川省重大科技攻关、成都市重大科技专项等国家

重点科研项目6项；已主持完成40多项涉及到航空航天、公

共安全、石油天然气、精密设备制造等行业中的项目与产品

研发。其技术领域涉及光电控制、ASIC芯片设计及验证、嵌

入式系统、通信及网络应用软件系统等。

获2007年国家科技进步二等奖一项；获2006年教育部科

技进步二等奖一项。获专利6项；软件著作权2项。

研究方向为复杂电子系统、集成电路验证技术和专用集

成系统设计及其应用。

	Moore机表示的系统迭代设计动态CTL模型检验的不变性研究
	李绍荣1，杨世翰2，吴尽昭10F(
	(1. 电子科技大学光电信息学院 成都 610054; 2. 中国科学院成都计算机应用研究所 成都 610041)

	1 Introduction
	2 CTL Model Checking
	3 Dynamic Model Checking Framework
	4 Formalization of Iterative Design Process
	4.1 Configuration and Component
	4.2 Changes of the Component
	4.3 Translation into Kripke Structures

	5 Invariance of Dynamic Model Checking
	6 Conclusions

