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Abstract  Model checking is a promising approach to verifying safety properties of trusted computing 

systems in the design phase of system-level. Dynamic model checking is the model checking in which the model 
changes frequently along the design process. A serious problem for dynamic model checking is that the cost of 
re-checking is too expensive due to model being changed trivially, so a key issue of the problem is to seek 
invariance in order to avoid the checking repeatedly. An invariance is a true predicate that will remain true 
throughout a sequence of model checking. In this paper, a formal framework of dynamic model checking is 
constructed, and an invariance theory is proposed based on an iterative design process of flow control oriented 
systems described by Moore machines. It is proved that some non-trivial computation tree logic (CTL) properties 
can be preserved in the iteration. 
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【摘要】模型检验是系统级设计中验证可信计算系统安全性性质的有效方法。动态模型检验是模型随设计过程而变化的

模型检验，动态模型检验过程中遇到的最严重问题之一是模型变化所带来的重复检验代价太高。因此，寻找不变性以避免重

复检验显得尤为重要。不变性是一种贯穿系列模型检验而保值为真的性质。该文构建动态模型检验的形式化框架，进而提出

基于Moore机描述的流控制系统迭代设计过程的不变性理论，该系统是一种嵌入式控制系统，在可信通信中用以处理数据转换，

最后展示了若干非平凡CTL性质在迭代过程中的可保持性。 
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1  Introduction 
Model checking is an automated formal 

verification technique that, given a finite-state model 
of a system and a formal property, systematically 
checks whether this property holds for a given state in 
that model. Model checking has been successfully 
applied to integrated circuit design and verification in 
last two decades. In some critical system (such as 
trusted computing system) designs, model checking 

could be the best formally method to apply for 
verification. But model checking of complex system is 
very expensive in time and space. Nowadays iteration 
is a common design strategy in modern system design 
and development, such as flow control oriented 
systems (FCOS)[1-2], which is a kind of embedded 
control system stressing to handle data transformation 
in trusted computing system, and whose model is 
described by Moore machine. Iterative design is a 
system design methodology based on a cyclic process 
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of prototyping, testing and verification, analyzing, and 
refining an application in progress. In detail, the 
iterative design process consists of 4 stages[3]:  
(1) definition of the specifications and design 
development; (2) production (model, mockup, 
prototype and product); (3) Verification / testing; (4) 
analyzing and evaluation. The four stages work 
through successively. At the end of each cycle the 
result is analyzed and evaluated. This serves as an 
input for the next cycle. In the iterative design process, 
it is very expensive and impractical to use the static 
model checking (the general model checking) 
approach along iterative process due to the high cost of 
re-checking. 

In the static model checking framework, the 
system is assumed to be fixed. But this assumption is 
usually untenable in real iterative designing situation, 
in which model checking is embedded and models are 
subject to change frequently[4]. 

The dynamic problem is usually involved in 
model checking. Dynamic model checking is the 
problem of the model checking in which the model 
changes frequently along the designing process. How 
can the property be re-verified effectively when the 
model changes? To solve this, the following two basic 
questions have to be considered: (1) how can it be 
ensured that the verified property still holds after the 
model changes, and (2) how can a new property be 
verified artfully and effectively when model changes, 
For the first question, if there is a sequence of models 
of a system, says 0 1, , , nM M M M= , where M is the 
final model, it is of great benefit to establish 
implication relation 1i iM Mφ φ+→  , since the cost 
of re-verifying is usually much higher than the cost of 
proving the implication relation. For the second 
question, if some properties of the system are added or 
changed according to the requirement with the 
proceeding of development process, information 
verified in the anterior iterative phase may be possibly 
reused in verifying of current iterative phase. 

In recent years, the investigation on dynamic 
problem of model checking focuses on restricting 
changes of the model or re-checking adaptively. If the 
development process is thought of a linear incremental 

design, where a final model M is built through a 
successive sequence of models 0 1M M⊆ ⊆  

nM M⊆ = , such that 1iM + somehow 
incorporates iM and enriches it with additional state or 
behavior, then incremental model checking 
methodology can be employed [5-6]. For a certain 
property, $,$ iMφ φ  implying 1iM φ+   means that 
the property φ  remains unchanged during 
incremental design, iM φ  implying 1iM φ+   
means that the refutation of φ  still remains. These 
results are valuable when the verification of 1iM φ+   
costs much more than the effort to prove iM φ →  

1iM φ+  . This incremental situation, however, is not 
always correct[7]. In iterative design processes, changes 
to model are almost arbitrary, which could be 
incremental or decremental. Reference [8] exploit the 
verification results to assist automatically learning the 
required updates of the model, then accelerate model 
rechecking processes when model changes. In addition, 
reference [9] gives a framework of dynamic model 
checking by applying game theory, and analyzes its 
complexity. 

In these works, however, a key concept invariance 
is neglected. Moreover there are not works on model 
checking embedded in iterative design process. There 
is a very important issue on dynamic model checking, 
i.e. how can we reuse the information verified in the 
anterior iterative phase? The invariance can 
dramatically avoid the verifying repeatedly. If the 
invariance of dynamic model checking can be found, 
the re-checking is not an obstacle any more and model 
checking embedded in the iterative design process is 
practical in the industry. In this paper, we focus on 
preservation of computation tree logic (CTL) 
properties in model checking along iterative process 
based on FCOS design. We construct a formal 
framework of dynamic model checking, and propose 
an invariance theory of dynamic model checking, and 
prove that properties expressed by CTL formulae are 
preserved along the iterative design process in the 
theory. We show that if some properties hold in some 
model iM , then they still hold in the successive 
model  ( )jM j i> . Our approach is better because that 
the monotonic increment assumption of model 
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sequence is not required anymore, the limit (in 
reference [5], the new behaviors added must not 
override the previous ones) of system behavior 
evolving is relaxed, and the new valid properties are 
also expediently discovered in the theory. This theory 
is an extension and a supplement of the classical CTL 
case. This also provides a supplement that simplifies 
the design process by carrying on verification as soon 
as they involve instead of having to proceed to the later 
complex model, where model checking procedure 
usually has to face the notorious state space explosion 
problem. 

In the rest of the paper, Section 2 reviews the CTL 
model checking. We formalize the dynamic problem of 
model checking in Section 3. Section 4 formalizes the 
iterative design process of Moore machine-based 
system. A fundamental theory on invariance of 
dynamic model checking is constructed in Section 5. 
Conclusion and future works are presented in Section 6. 

2  CTL Model Checking 
Model checking problem could be simply 

described as: 
Given a simplified mode of a system, test 

automatically whether this model meets a given 
specification. 

CTL model-checking is an automatic technique 
for verifying properties expressed in a propositional 
branching time temporal logic called computation tree 
logic (CTL). The system is defined by a Kripke 
structure, and properties are evaluated on a tree of 
infinite computations produced by the model of the 
system. The standard notation ,M s p  indicates that 
a formula p holds in a state s of a model M. If a 
formula holds in the initial state, it is considered to 
hold in the model. 

Definition 1 (Kripke structure)  A Kripke 
structure is a five-tuple: 

0, ,AP, ,K S S L R= 〈 〉  

where S is a finite set of states, 0S S⊆ is the set of 
initial states, AP is a finite set of atomic propositions. 

0 1 |AP| 1, , ,L l l l −=   is a vector of | AP | functions. 
Each function defines the value of exactly one atomic 
proposition; for all 0 | AP |i≤ ≤  we have :il S →  , 

{true, false}= ; for all s S∈ , we have that ( )il s  is 
true if and only if the atomic proposition associated to 

il  is true in s, and R S S⊆ × is the transition relation. 
A computation of system is an infinite sequence 

of states, where each state is obtained from the 
previous state by some transition. Paths in a Kripke 
structure model computations of the system. 

Definition 2 (Path)  A path in a Kripke structure 

0, ,AP, ,K S S L R= 〈 〉  is an infinite sequence of states 

0 1 2s s s  , such that 1( , )i is s R+ ∈ for all 0i≥ , and 

0 0s S∈ . 
For a Kripke structure 0, ,AP, ,K S S L R= 〈 〉  and 

a state s S∈ , there is an infinite computation tree with 
the root labelled s, such that ( , )s s′ ′′  is an edge in the 
tree if and only if ( , )s s R′ ′′ ∈ . This tree is obtained by 
unfolding the Kripke structure at state s. The features 
of the computation tree could be captured by CTL 
logic language. 

Let f, g be CTL formulae, ,¬ ∧  boolean logic 
operators, A an universal quantifier, E an existent 
quantifier, and , , ,X F G U  temporal operators. The 
syntax of CTL formulae[10] is given as follows: 

• Every atomic proposition is a CTL formula; 
• If f and g are CTL formulae, then so are 

, ( ), , , ( ), ( ).f f g AXf EXf A fUg E fUg¬ ∧  
The other operators ( , , , , ,AF EF AG EF∨ → ) are 

viewed as being derived as usual from the following 
equations: 

( )

(true  )
(true  )

(true  )
(true  )

f g f g
f g f g
AFg A U g
EFg E U g
AGf E U f
EFg S U f

∨ = ¬ ¬ ∧ ¬
→ = ¬ ∨

=
=
= ¬ ¬
= ¬ ¬

 

Let K be a Kripke structure, ,f g CTL formulae, 
s S∈ and ,i j ∈ ,  a set of natural numbers. The 
interpretation of a CTL formula[10] with respect to a 
Kripke model K is given as following: 

,K s p  iff ( )p L s∈  
,K s f¬  iff s f  
,K s f g∧  iff s f  and s g  

0,K s AXf  iff 
for all paths 0 1( , , )s s  , 

1s f  

0,K s EXf  iff for some path 0 1( , , )s s  , 
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1s f  

0, ( )K s A fUg  iff 
for all paths 0 1( , , )s s  , 
for some , ii s g  and 
for all , jj i s f<   

0, ( )K s E fUg  iff 
for some path 0 1( , , )s s  , 
for some , ii s g  and 
for all , jj i s f<   

3  Dynamic Model Checking  
Framework 
Static model checking is to compute M φ  

only once, where M is usually the final model in design 
process. The model M is often very complex and the 
model checking process is incidental to meet the state 
space explosion problem. However, the designer often 
wants to verify the model when it does not come to the 
end, because he thinks intuitively that some properties 
should be verified and that the model is not so complex 
yet. The frequency of re-verification is wanted to be 
reduced when the model improves. The designer even 
wants not to re-verify some properties when the model 
evolves. But now the fact is that the re-verifying / 
regressive-testing has to be made at each step in the 
iterative design process. Those are involved in the 
problems of dynamic model checking. How can the 
designer check / recheck the model when it does not 
evolve into the end? How can the cost of model 
checking / rechecking be reduced effectively when the 
model becomes complex. Let’s investigate the process 
of dynamic model checking at first. 

Dynamic model checking is actually an iterative 
process of model checking, which is embedded in the 
iterative design process: 

(1) Checking M φ ; 
(2) Correcting or improving model M; 
(3) Going back to 1. 
The reason why correcting or refining model M is 

that system designs have to be corrected or refined 
according to the requirements along the iterative 
design process. Intuitively, dynamic model checking 
could be seen as a sequence of static model checking 
based on the natural arithmetic structure, which is 
described as follows. 

Given a relational structure  , the universe, 

denoted | | , is an initial segment of the natural 
numbers, that is, | | 0,1, , 1n= − , where n ∈ , 
  is the set of natural numbers. In addition, we 
assume that the structure is provided with the built-in 
predicate ≤  (with the natural interpretation) and the 
built-in predicate (2)BIT , which is used to query the 
binary representation of the numbers building the 
universe. Moreover, we assume that the structure has at 
least two elements, and we identify 0 with false and 1 
with true. This kind of structures will be referred to as 
arithmetic structures. Given a relational vocabulary τ , 
we write Struc[ ]τ  for the set of all arithmetic 
structures with vocabulary τ  (that is, { ,BIT}τ  ≤ ) 
and Struc [ ]n τ  for all such structures with n elements. 

A dynamic problem is usually specified[11] by (1) 
a set of operations that can be used to build instances 
of the problem, (2) a set of all possible solutions to the 
instance represented by a sequence of those operations, 
and (3) an interpreting with the solution set on the 
sequence. 

As far as dynamic model checking is concerned, 
the model M of a system, a Kripke structure, is to be 
changed, but the property, specified by formula φ , is 
assumed to be fixed. So, (1) the instance of dynamic 
model checking is one static model checking, and the 
operations of the instance(changes of the model) are 
insertion and deletion of states and relabelling of the 
states, that is, formally described as: 

{Insert,Delete} {SetVar A }Pmc
U Uφ∑ ⊆= ∪ ∣  

where mcφ∑  is the vocabulary of operations, and we 
also use mc

n
φ∑  to denote the set of operations for 

constructing the instance of the problem with size n, 
and we use *( )mc

n
φ∑  to denote transitive closure of 

mc
n

φ∑ . The meanings of Insert  is an operator of 
inserting states into the Kripke structure. The meaning 
of Delete is an operator of deleting states from the 
Kripke structure, and the meaning of SetVar ( )U i  is 
that the ith state of the Kripke structure gets label U, 
AP is the finite set of atomic propositions. (2) The 
solution to the model checking instance is represented 
by a Boolean constant, v (for verified) , so the solution 
set is 

{ }, {true, false}mc v vφτ = ∈  

and (3) an interpretation to the sequence of operations 
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is a partial function: 
:mc mc

n us uφ φ
  

where ( ) , Struc [ ]mc mc mc
n u nu φ φ φ∑ τ∗∈ ∈ , and mc

ns vφ   
if and only if φ  holds in the Kripke structure with 
state set{0,1, , 1}n − , with the initial state 0 and with 
edge relation (transition relation) labeling according to u. 

So dynamic model checking is formally given by 
Definition 3 (Dynamic model checking)  

Dynamic model checking (DMC) is formally described 
as a 3-tuple: 

DMC , ,mc mc mc
nsφ φ φ∑ τ= 〈 〉  

where mcφ∑ is a set of operators that can be used to 
change the model, mcφτ is a set of solution to model 
checking, i.e. {true, false} . It is true when M φ  
holds, and false when others, and mc

ns φ is a partial 
function defined above, says how a sequence of 
operators maps to the solution set of model checking. 

Intuitively, dynamic model checking is a 
successive sequence of static model checking during 
system design process. It comprises three essential 
parts, a stepwise improving sequence of the system 
model, a sequence of solution to model checking 
problem for the property and every model among the 
model sequence, and a relation function between the 
model sequence and the solution sequence. Of course, 
an invariance of dynamic model checking is a key 
issue. The invariance is defined as follows: 

Definition 4 (Invariance)  In dynamic model 
checking, an invariance is a predicate   that, if holds, 
will remain holds throughout a sequence of static 
model checking, where the predicate   ( M φ ) is 
satisfiable relation between a model M and a property 
φ  as usual. 

According to the different set of operators ( mcφ∑ ), 
different kinds of problem of dynamic model checking 
could be formalized. In this paper, the iterative FCOS 
design is considered. Let {Insert,Delete}mcφ∑ = ∪  

(1){SetVar }U , and dynamic model checking embedded 
in iterative system design process is formally defined 
as above. 

4  Formalization of Iterative Design 
Process 
In this section, we describe formally the 

system-level design process of FCOS, whose model is 
described by Moore machines. The FCOS is composed 
of components. A component is viewed as a control 
part driving a data path, and a component presents an 
interface made of directed typed signals. A component 
could be added into the system or be deleted from the 
system or be revised by the design engineers during 
iterative design process. A component could be usually 
modeled by a complete and deterministic synchronous 
Moore machines. So changes of the system along 
iterative design process could be seen as changes of 
Moore machines, into which states are added, or from 
which states are deleted. For the formal description of 
a component, signal and configuration are key 
concepts. 
4.1  Configuration and Component 

Signal is the basic concept in the field of digital 
design. A signal is a time-varying or spatial-varying 
quantity. In FCOS design, the signal is defined as 
follows. 

Definition 5 (Signal)  Each signal is defined by a 
variable name s and an associated finite definition 
domain Dom( )s . 

The value of all signals at a special moment is 
formed as a configuration of the component. The 
configuration expresses the state of the component at 
that point. 

Definition 6 (Configuration)  Let E be a set 

1 2, , , nE s s s=   of signals. A configuration ( )c E  is a 
conjunction of the associations: for each signal in E, 
one signal associates one value of its definition domain. 
The set of all configurations ( )c E , named ( )C E , 
is 1 2DoDom( ) ( ) Do )m m( ns s s× × × . 

Sometimes we do not consider all signals at a 
moment, and we are only interested in part of them. 
The value of that part of signals at a moment could be 
seen as the projection of a configuration. 

Definition 7 (Projection)  A projection of a 
configuration ( )c E  on the ith signal is a 
function ( ( )) , Dom( ),i i i i ip c E v v s s E= ∈ ∈ . 

Moreover, we denote 1 2( ( )) ( , , , ),I mp c E v v v=   
for 1 ,k m≤ ≤ Dom( ),k kv s∈ ,ks I I E∈ ⊆  as 
projection of a set I of signals, and denote ( ( ))ip c E =  

1 2 1 1( , , , , , , )i i nv v v v v− +  , Dom( ),j jv s∈  j i≠  as a 
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sub-configuration without ith signal participating in. 
We also denote ( ( ))Ip c E  as a sub-configuration 
without set I of signals participating in, and denote 

( ( ))Ip C E  as a set of all sub-configurations without 
set I of signals participating in. 

We consider applying changes to a component 

iW  to evolve the next different component 1iW +  in 
the sequence of components, where iW  refers to the 
component resulting from the ith successive changes. 
At first, a component could be defined as a complete 
and deterministic synchronous Moore machines by 
concepts described above. 

Definition 8 (Component)  A component 

0
, , , , ,i i i i i i iW S I O T L s= 〈 〉  

is described as a deterministic and complete Moore 
machine, where iS  is a finite set of states, iI  is a 
finite set of input signals with their finite definition 
domain, iO  is a finite set of output signals with their 
finite definition domain, ( ) :i i i iT S C I S⊆ × ×  Finite 
set of transitions, , ( ),i is S c C I∀ ∈ ∀ ∈  ! . .is S s t′∃ ∈  
( , , ) is c s T′ ∈  ( !∃  means there exists exactly one), 

0i is S∈ is the initial state, and 0 | | 1, ,
ii OL l l −=  is a 

vector of generation functions, and each function 
defines the value of exact one output signal in each 
state; for all output signal jo , 0 | |ij O<≤ , we 
have : Dom( )j i jl S o→ . Applying the vector of 
generation functions to a given state of iS  produces a 
configuration ( )ic O . 
4.2  Changes of the Component 

A change is a set of modifications applied to a 
component’s architecture for getting a new component 
with more correctness during the iterative design 
processes. It reflects the occurrence of a new event at 
the component’s interface. The new event affects the 
component by means of two basic ways, either just 
addition or just deletion of behaviors and a set of states 
and output signals. The new event is modeled by the 
appearance of a changed set of input signals with their 
definition domain. The set of all configurations 
corresponding to the changed input signals is split into 
two disjoint sets representing that the changed event is 
active or not. 

Definition 9 (Event)   An event e to component 

iW  is a triple 

act qt, ( ), ( )e I C I C I= 〈∆ ∆ ∆ 〉  

where I I I+ −∆ = ∪ , I+  is the set of added input 
signals with their definition domain, I−  is the set of 
deleted input signals, I I+ −∩ = ∅ , i.e. signal name 
should not be reused. If I− ≠ ∅  then some input 
signals have been deleted. Assuming domain of all 
signals is{0,1} , if a signal is I−∈  and ( ( )) 1ip c E = , 
then configuration ( )c E  should be already deleted, 
and configurations ( )c E  should be changed 
into ( ( ))ip c E . When some configurations are deleted, 
(i.e. some edges of the Moore machine have been 
deleted) some states maybe have zero in-degree, so 
these states should be deleted from the Moore machine 
of iW . 

act ( )C I∆ is the set of configurations representing 
the occurrence of the changed event. If one such 
configuration occurred, the event would be said to be 
active. 

qt ( )C I∆ is the set of configurations representing 
the absence of the changed event. If one such 
configuration occurred, the event would be said to be 
quiet. 

There are two kinds of basic event, addition event 
and deletion event. 

Definition 10 (Addition Event)  An event e is an 
addition event, denoted ADDe , if I I+∆ =  in above 
definition of event e. 

Definition 11 (Definition Event)  An event e is a 
deletion event, denoted DELe , if I I−∆ =  in above 
definition of event e. 

Obviously, we have act qt( ) ( )C I C I∆ ∪ ∆ =  
( )C I∆ and act qt( ) ( )C I C I∆ ∩ ∆ = ∅ . 

By means of the concept of events, the change of 
a component is formally defined as follows. 

Definition 12 (Change)  A change to a 
component iW  is a four tuple: 

, , ,iW E T O∆ = 〈 ∆Σ ∆ ∆ 〉  
where E  is the set of events described above, ∆Σ  is 
the set of changed states, T∆  is the set of changed 
transition, and O∆  is the set of changed output 
signals and their definition domain. 

There are two basic changes to component iW , 
i.e. increment and decrement. If only addition events 
impose on iW , we say an incremental change to it. If 
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only deletion events impose on iW , we say a 
decremental change to it. If both addition and deletion 
events occur to iW , we say that there is a compositive 
change (or general change) to iW . 

Definition 13 (Increment)  An incremental 
change to a component iW  is a four tuple: 

ADD , , ,INC e T OΣ + + += 〈 〉  
Where ADDe  is the additional event described above, 
Σ +  is the set of new reachable states, iSΣ + ∩ = ∅ , 

( ( ) ) ( ( )i i i iT S C I I S C I IΣ+ + + +⊆ × ∪ × ∪ × ∪ × )Σ + ∪
( ( ) )i iS C I I Σ+ +× ∪ × ( ( ) )i iC I I SΣ + +∪ × ∪ × , and O+  
is the set of new output signals and their definition 
domain, with act ( )C O+ , the set of configurations 
representing the activation of the output, and qt ( )C O+ , 
and the set of configurations representing the 
non-activation of the output. The output functions 
associated to O+  return a configuration in qt ( )C O+  
for all states in iS  

Definition 14 (Decrement)  A decremental 
change to a component iW  is a four tuple: 

DEC , , ,e T OΣ − − −= 〈 〉  

Where DELe  is the deletional event described above, 
Σ −  is the set of states deleted by event DELe , 

\ ( \ ) \i i iT S C I I SΣ Σ− − − −⊆ × ×� � � , where \iS Σ −�  is a set 
difference of iS  and Σ − , \iI I−  a set difference of 

iI  and I− . ( ) ( ( ))\i iIC I I p C I
−− = , and O−  is the set 

of output signals deleted, iO O− ⊆ . 
A component 1iW +  is obtained by applying 

changes to a component iW . There are three cases by 
definition above, i.e. incremental change, decremental 
change and compositive change. There is a simulation 
relation between two Moore Machines when we 
consider the relation of model checking problems 
between iW  and 1iW + . 

Definition 15 (Simulation relation)  Let M and 
M ′  be two Moore Machines with I I ′⊆  and 
O O′⊆  , 0s S∈ (resp. 0s S′ ′∈ ). A relation 
H S S ′⊆ ×  is a simulation relation from 0( , )M s  to 

0( , )M s ′′  if and only if the following conditions hold: 
1) 0 0( , )H s s ′ ; 
2) for all s and 's , ( , )H s s′  implies: (1) the 

projection of ( )L s′ ′  onto O′  is equal to ( )L s , (2) for 
every p such that ( , ( ), )s C I p T∈ , there exists p′  
( , ( ), )s C I p T′ ′ ′ ∈  and ( , )H p p′ . 

With this simulation relation we have 
Theorem 1  1 1( , )i iW s+ + simulates ( , )i iW s , if 1iW +  

is obtained from iW  by only applying incremental 
changes. 

Proof: We build a binary relation ρ  between the 
states of two consecutive components iW  and 

1iW + ,such that 1 : ( , , )i i iS S s c p Tρ +⊆ × ∀ ∈  and 

1( , , ) is c p T +′ ′ ′ ∈ , we set ( , )s s ρ′ ∈  iff s s′ =  and 
_ , _ ( )qtc c e qt e qt C I+′ = ∧ ∈ . By the construction, 

ρ is a simulation relation. 
Theorem 2  ( , )i iW s simulates 1 1( , )i iW s+ + , if 1iW +  

is obtained from iW  by only applying decremental 
changes. 

Proof: We build a binary relation ρ  between the 
states of two consecutive components 1iW +  and iW , 
such that 1 1: ( , , )i i iS S s c p Tρ + +⊆ × ∀ ∈  and 
( , , ) is c p T′ ′ ′ ∈ , we set ( , )s s ρ′ ∈  iff s s′=  and 

( )Ic p c
−

′= . By the construction, ρ is a simulation 
relation. 
4.3  Translation into Kripke Structures 

Using the framework of dynamic model checking 
of flow control oriented system design given above, we 
can interpret insert and delete operators in operational 
set ( mcφΣ ) based on the changes defined above, and 
the input configurations that label the transitions by the 
Moore machine are incorporated into the states in a 
Kripke structure (resp. SetVar  operator). 

It is easy to deduce a Kripke structure from a 
given component iW  by the following definition. 

Definition 16 (Deduce Kripke structure)  Given a 
component iW , the corresponding Kripke structure 
can be obtained as follows: 

( ) ( ),0 ( ) ( ) ( )( ) , ,AP , ,
i i i i ii K W K W K W K W K WK W S s L R= 〈 〉  

Where ( ) ( )
iK W i iS S C I= × , ( ),0 ( )

iK W i is s C I= × , 

( )AP
iK W i iI O= ∪ , 

0 | | 0 | |( ) 1 1{ , , } { , , }
i I Oi iK W I I O IL l l l l− −= ⋅   

is a vector of ( )| AP |
iK W  function, and is vector 

concatenation, and ( ) ( ) ( )i i iK W K W K WR S S⊆ ×  and 

( ) ( )( , ) , ( , )
i ii K W i K Ws c S s c S′′∀ ∈ ∀ ∈ , (( , ),is c  

( )( , ))
ii K Ws c R′′ ∈  iff ( , , )i is c s T′ ∈ . 

1iW + is produced from iW  by applying change 
operators defined above. 1( )iK W +  is considered to be 
produced from ( )iK W  by applying some operators 
in mcφΣ , although it is not in fact. We are interested in 
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whether a CTL specification formula φ  still holds or 
not in 1( )iK W +  if it was verified previously in ( )iK W . 

5  Invariance of Dynamic Model  
Checking 
Some implications between the Kripke structures 

deduced from the components, which are in different 
phases of the iterative FCOS design process, show the 
invariance in this iterative dynamic model checking. 
Suppose component 1iW +  is changed from component 

iW  by applying change events, ( )iK W  and 1( )iK W +  
are the Kripke structures deduced from iW  and 1iW +  
respectively. During the design processes mentioned 
previously, we investigate whether every CTL formula 
holds in component iW  amd in the successive 
component 1iW + . At first, relationships between 

( )iK W  and 1( )iK W +  are observed by the following 
two definitions. 

Definition 17 (Enrichment relation)  For all 
states ( , ) ( )it s c K W= ∈ , if there exist ( , )t s c′ ′ ′=  and 

1( , ) ( )it s c K W +′′ ′′ ′′= ∈  such that (1) ,s s c′ ′= =  
_ qtc e∧  and(2) , _ acts s c c e′′ ′′= = ∧ , where 

qt act_ qt ( ), _ act ( )e C I e C I+ +∈ ∈ , then t′  and t′′  are 
said to enrich t, and 1( )iK W + is said to enrich ( )iK W . 

Definition 18 (Impoverishment relation)  For all 
states ( , ) ( )it s c K W= ∈ , if there exists 

1( , ) ( )it s c K W +′ ′ ′= ∈  such that , ( )Is s c p c
−

′ ′= = , then 
t′  is said to impoverish t, and 1( )iK W + is said to 
impoverish ( )iK W . 

Then simulation relations between iW  and 1iW +  
can deduce relationships between ( )iK W  and 

1( )iK W + . This is demonstrated by the following 
theorems (easy to prove them by definition of 
simulation relations). 

Theorem 3  If 1 1( , )i iW s+ +  simulates ( , )i iW s  
by applying an incremental change to iW , then 

1( )iK W +  enriches ( )iK W . 
Theorem 4  If ( , )i iW s  simulates 1 1( , )i iW s+ +  

by applying a decremental change to iW , then 

1( )iK W +  impoverishes ( )iK W . 
So the invariance of dynamic model checking in 

the iterative design process of FCOS can be described 
by the following two theorems, it is easy to prove these 
theorems by induction on the structure of CTL 

formulae and semantics of CTL. The property, 
expressed by a kind of CTL formulae, can be preserved 
in the iterative design process, and the verified 
information on counter example can be reused in the 
verifying of current iterative phase. 

Theorem 5  1( ), ( ),i iK W s K W sφ φ+ ′→   with 
enrichment relation, if a CTL formula φ  obtained by 
applying recursively the rules of CTL formulae: (1) 
every atomic proposition is a CTL formula, (2) if  f  
and g are CTL formulae, then so are ,f¬  
( ), , ( )f g EXf E fUg∧ . 

Proof: By induction on the structure of CTL 
formulae, let q be an atomic proposition, ,f g be two 
CTL formulae, 0s (resp. 0s ′ ) be the initial state in 

( )iK W  (resp. 1( )iK W + ). 
• qφ = . ( ),iK W s q , so ( ) ( )

iK Wq L s∈ .  By 
addition event to iW , we  have

1( )_ ( )
iK Wq e qt L s
+

′∧ ∈ , 
so

1( ) ( )
iK Wq L s
+

′∈ , i.e. 1( ),iK W s q+ ′ . 
• f gφ = ∧ . By the semantics of CTL formulae, 

( ),iK W s f and ( ),iK W s g , then ( ) ( )
iK Wf L s∈  

and ( ) ( )
iK Wg L s∈ . Because s′  enriches s, so 

1( )_ ( )
iK Wf e qt L s
+

′∧ ∈ and
1( )_ ( )

iK Wg e qt L s
+

′∧ ∈ , 
so

1( ) ( )
iK Wf g L s
+

′∧ ∈ , i.e. 1( ),iK W s f g+ ′ ∧ . 
• EXfφ = . Assume that 0 1, ,s s∃  , 1s f , 

then ( ) 1( )
iK Wf L s∈ , so

1( ) 1_ ( )
iK Wf e qt L s
+ ′∧ ∈ . Suppose 

0s ′  enriches 0s , 1s ′  enriches 1s ,  , etc. So there is a 
path 0 1, ,s s′ ′  , such that

1( ) 1( )
iK Wf L s
+ ′∈ , i.e. 

1( ),iK W s EXf+ ′ . 
The other cases could be proved same. 
As for the CTL formulae , ( )AXf A fUg , one could 

not assure whether they still hold or not in the changed 
component 1iW + , because this kind CTL formulae is 
universal quantifier path formulae, where we can not 
figure out any universal path features only from a part 
of the path. 

Theorem 6  1( ), ( ),i iK W s K W sφ φ+ ′ →   with 
impoverishment relation, if a CTL formula φ  
obtained by recursively applying the constructive rules 
of CTL formulae: (1) every atomic proposition is a 
CTL formula, (2) if f and g are CTL formulae, then so 
are , ( ), , ( )f f g EXf E fUg¬ ∧ . 

The significance of this theorem lies in its 
converse-negative proposition: 

1( ), ( ),i iK W s K W sφ φ+ ′→   
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which tells us that a counterexample in the previous 
component iW  must be a counterexample in the next 
component 1iW +  changed from iW  by applying 
deletion event. Moreover, given a formula to be 
verified on a model, if we can find a decremental 
change of the model (impoverishing it), then the 
verification could be applied to the simpler model. 

6  Conclusions 
We have investigated how to handle dynamic 

model checking problems by very special perspective 
during iterative design process of Moore machine-base 
system, and proposed a theory of invariance on 
dynamic model checking embedded in the iterative 
design process. The invariance can dramatically reduce 
the cost of rechecking. 

In the near future, we are interested in finding a 
decrement such that a complex model could be 
impoverished to a simpler model by applying 
decremental changes, then one can verify formulae in 
the simpler model according to Theorem 6. And we are 
specially paying attention to dynamic problems of 
model checking in iterative developing process of 
software engineering, in which the dynamic problems 
are much frequently encountered. How to reuse the 
reserved information that could be obtained from both 
previous verifications and changed-events to accelerate 
model rechecking processes is another researching 
interest of us. 
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