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Abstract  The problem of impulsive stabilization of delayed cellular neural networks (DCNNs) via partial 

states is discussed. The time delay is allowed to be time-varying. By utilizing the piecewise linear property of the 
activation function of DCNNs and applying piecewise differential Lyapunov combined with Razumikhin- type 
analysis techniques, a sufficient condition for the existence of the impulsive control law via partial states is derived. 
The sufficient condition is given in terms of linear matrix inequalities concerning the interconnection matrices and 
the bounds of the impulsive intervals. By using this result, an impulsive stabilization scheme for a class of DCNNs 
is proposed. The impulsive stabilization scheme only utilizes the output of partial states of the controlled DCNN. A 
numerical example illustrates the efficiency of the proposed method. 
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【摘要】研究了具有变时滞的细胞神经网络的部分状态脉冲镇定问题。利用细胞神经网络激活函数的分段线性性，应用

分段可微的Lyapunov函数，并结合Razumikhin型分析技术，得到了部分状态脉冲控制律存在的充分条件。该充分条件表示为

基于互联矩阵和脉冲区间界的线性矩阵不等式。应用上述结果，对一类时滞细胞神经网络，提出了一种新的脉冲镇定方案。

该脉冲镇定方案仅需利用部分状态的输出信息。最后，给出了一个数值例子说明了此方案的有效性。 
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Impulsive systems are a class of hybrid systems 
combining continuous evolution with instantaneous 
state jump, which are widely used in modeling real 
world evolutionary processes where the states undergo 
rapid changes. The impulsive control methods based 
on the stability theory of impulsive systems[1] have 
found important applications in the synchronization 
and control of complex dynamical systems. Compared 
with the continuous-time control, the impulsive control 
allows stabilization of systems only using small 
impulses generated by samples of the state variables at 

discrete time instants. This drastically reduces the 
amount of measured information transmitted from the 
system to the controller and increases the efficiency of 
bandwidth usage. However, in the most existing 
impulsive control results[2-8], the impulse control is 
exerted on all the state variables of the controlled system, 
which means that the full state information is required. 
There are many applications where only partial states 
are available or measurable. Thus, it is of importance to 
design an impulsive control law via partial states to 
stabilize the system under consideration. 
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In Ref. [9], an impulsive control strategy via a 
single variable is proposed to synchronize two identical 
Chua’s circuits. The choice of the impulsive instant 
depends on the monotonic property of the impulsively 
controlled state. In Ref.[10], the problem of impulsive 
synchronization of two identical Lur’e systems via 
partial states was studied. The new impulsive 
synchronization scheme only exerts the impulsive input 
on partial states of the driven system and is 
characterized by a set of conditions related to the 
impulsive interval bound, the impulsive magnitude and 
a coupling condition between them. From the results of 
Ref.[9-10], the key technique of designing impulsive 
control law via partial states lies in the choice of 
appropriate decomposition of the system: a stable 
subsystem and an unstable subsystem subject to 
impulsive input. For different systems, such 
decomposition may be different. In this paper, we will 
investigate the impulsive stabilization problem of 
delayed cellular neural networks (DCNNs) based on 
partial states. It is noted that cellular neural networks 
(CNNs) were introduced by Ref. [11-12] and they have 
been found important applications in image processing 
and solving nonlinear algebraic equations. When 
processing moving objects, one must introduce 
time-delays in the signal transmission among the cells. 
These lead to the model of DCNNs. Despite the CNN 
structure is simple because the activation function of 
the CNNs is a piecewise linear function, it should be 
pointed out that the CNNs may have complex 
dynamical behavior. For example, chaotic attractors 
were found in autonomous CNNs composed by three 
cells [13] and in DCNNs composed by two cells [14]. The 
main idea of this paper is to divide the network state 
variables into subgroups by utilizing the piecewise linear 
property of the activation function [15]. Then a piecewise 
differentiable Lyapunov function is introduced to 
analyze the stability of the DCNN with partial states 
subject to impulsive input. The existence conditions of 
the impulsive control law via partial states are expressed 
by a set of linear matrix inequalities (LMIs), which can be 
solved by the developed interior-point algorithm. 

1  Problem Formulation 
In the sequel, if not explicitly stated, matrices are 

assumed to have compatible dimensions. The notation 
( , , )0> <≥ ≤M is used to denote a positive-definite  

(positive-semidefinite, negative, negative-semidefinite) 
matrix. I denotes an identity matrix of appropriate 
dimension. ⋅ denotes the Euclidean norm for vector 
or the spectral norm of matrices. N denotes the set of 
nonnegative integers, i.e., N ={0,1,2,…}. For τ >0, PC 
([−τ,0],Rn) denotes the set of piecewise right 
continuous function: [−τ,0]→Rn with the norm defined 
by

0
sup ( )

τ
τ θ

θ
−

=
≤ ≤

φ φ . For σ >0, PC([−τ,0],Bσ)= 

{φ∈PC ([−τ,0],Rn); φ
τ

<σ}. 

Consider the cellular neural networks with 
variable delay described by the following delay 
differential equations: 

0

( ) ( ) ( ( )) ( ( ( )))
( ) ( )

t

t t t t t
t t

τ = − + + − +


=
 =

x x Af x Bf x u
y Cx
x φ

  (1) 

where x=(x1, x2,…, xn)T is a real n-vector which denotes the 
state variables associated with the neurons, A,B∈ Rn×n are 
the connection weight matrix and the delayed  
connection weight matrix, respectively, f(x)=(f(x1),f(x2),…, 
f(xn))T is the neuron activation function given by 
f(xi)=0.5(|xi+1|−| xi−1|), i = 1,2,…,n. u is a real constant 
input n-vector. The time-delay τ(t) is a bounded 
function, i.e., 0≤τ(t)≤τ, where τ≥0 is a constant. y∈ 
Rp is the measure output, C∈ Rp×n is a constant matrix. 
t0 is the initial time and φ∈PC ([−τ, 0], Rn) is the state 
initial function. 

It is known that at least one equilibrium point of the 
neural network (1) exists. Denote one of the equilibrium 
points by * * * * T

1 2( , , , )nx x x= x . For notational 
convenience, we will shift the equilibrium point *x of 
DCNN (1) to the origin. If we let transformation 

*( ) ( )t t= −x x x , then we obtain the new description of 
DCNN Eq.(1) as 

0

( ) ( ) ( ( )) ( ( ( )))
( ) ( ( ) )*

*
t

t t t t t
t t

τ = − + + −


= +
 = −



   





x x Ag x Bg x
y C x x
x φ x

    (2) 

where T
1 2( , , , )nx x x=   

x is the state vector of the new 
DCNN Eq.(2), * *( ) ( ) ( )= + − g x f x x f x . 

Set {1,2, , }N n=  . As in [15], we divide the index 
set N into three index subsets: *

1 { ; 1}iN i N x= ∈ > , 
*

2 { ; 1}iN i N x= ∈ ≤ and *
3 { ; 1}iN i N x= ∈ < . We 

assume that 1 1 2{ , , , }rN i i i=  , 2 1 2{ , , , }r r r mN i i i+ + +=

 , 

3 { , , }r m nN i i+=

 . For the simplification of notion, we 
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rearrange the order of *, ,i i ix xϕ , and let ( ) ( )
jj it t= z x , 

* ( ) ( )
jj it t=φ φ , * *

jj i=z x , j N∈ . Let 
*

1 { ; 1}jN j N z= ∈ > , *
2 { ; | | 1}jN j N z= ∈ ≤ , 

*
3 { ; 1}jN j N z= ∈ < − , then N1={1,2,…,r}, N2={r+ 1, 

r +2,…,r +m}, and N3={r+m+1, r+m+2,…,n}. Set z(1) 
(t)=(z1(t), z2(t),…,zr(t))T, z(2)(t)=(zr+1(t), zr+2(t),…,zr+m 
(t))T, z(3)(t)=(zr+m+1(t), … , zn(t))T, z(t)=(z1(t), 
z2(t),…,zn(t))T. Then, Eq. (2) can be rewritten as 

0

( ) ( ) (1) (2)
1 2

(3) (1)
3 1

(2)
2

(3)
3

3
( ) * ( )

1
* *

( ) ( ) ( ( )) ( ( ))
( ( )) ( ( ( )))
( ( ( )))
( ( ( ))),    1,2,3,

( ) ( ( ) ( ) ),

,

i i
i i

i i

i

i

i i
i

i

t

t t t t
t t t
t t
t t i

t t

τ
τ
τ

=

 = − + +
 + + −
 + −
 + − =

 = +

 = = −

∑

z z A g z A g z
A g z B g z
B g z
B g z

y C z z

z ψ φ z

  (3) 

where [gT(z(1)(t)) gT(z(2)(t)) gT(z(3)(t))]T= f (z(t)+ z∗ )−f (z∗ ). 
In this paper, we assume that N2 is not empty, C1 

= 0 and C3 = 0. That is, for DCNN (3), only the output 
information of the state variable z(2) (t) is available. To 
exponentially stabilize the zero equilibrium of DCNN 
(3), design an impulsive control law: 

∆z(2)(t)=K(y(t−)−C2(z
∗ )(2))    t=tk      (4) 

where K is the impulsive gain matrix to be designed, 
{tk} is the impulse time sequence satisfying 0<t1<t2<…
<tk< … (tk →∞ ask →∞ ), ∆z(2)(t)(tk)=z(2)(t+)−z(2)(t−) 
describes the state jumping at impulse time t=tk, and 

(2) (2)

0
( ) lim ( )k kh
t t h−

→ −
= +z z , (2) (2)( ) ( )k kt t+ = =z z  

(2)

0
lim ( )kh

t h
→ +

+z , k∈N. Then we can obtain an 

impulsively controlled DCNN as Eq.(5). 

0

( ) ( ) (1) (2)
1 2

(3) (1)
3 1

(2)
2

(3)
3

(2)
2
* *

( ) ( ) ( ( )) ( ( ))
         ( ( )) ( ( ( )))
          ( ( ( )))
         ( ( ( )))      1,2,3
( ) ( )

i i
i i

i i

i

i

t

t t t t
t t t

t t
t t i

t t

τ
τ
τ

 = − + + +
 + − +
 − +
 − =
 =


= = −

z z A g z A g z
A g z B g z

B g z
B g z

y KC z
z ψ φ z

 (5) 

Remark 1  In system Eq.(5), only the state 
variable z(2) (t) is subject to impulsive control. If 1≤m
≤n −1, we will call Eq.(4) a reduced-order impulsive 
control law of DCNN (1). In the case of m = n, the 
control law Eq.(4) becomes a full-order impulsive 
control law. The advantage of reduced-order impulsive 
control law over the full-order impulsive control law 
lies in the fact that it can effectively deal with the case 

when only partial states are available or measurable. 
We define 

1

*min( 1)ii N
z

∈
− = +∞  if N1 is empty and 

3

*min( 1 )ii N
z

∈
− − = +∞  if N3 is empty. Then 

1

*min{min( 1),ii N
q z

∈
= −

3

*min( 1 )} 0ii N
z

∈
− − > . It follows that 

if there exists some T > t0 such that 
|zi(t)|<q,t∈[t0−τ,T]   i∈N1∪N3       (6) 

then, |zi(t) + *
iz |>1, ∀i∈N1 ∪ N3, t∈[t0−τ,T ]. 

Furthermore, if condition Eq.(6) holds, it is easy to 
verify that for t∈[t0−τ,T], system Eq.(5) becomes 

0

( ) ( ) (2)
2

(2)
2

(2)
2

( ) ( ) ( ( ))
( ( ( )))   1, 2, 3

( ) ( )    

i i
i

i k

k

t

t t t
t t t t i

t t t t
τ

−

 = − +
 + − ≠ =
 = =
 =

z z A g z
B g z

y KC z
z ψ

  (7) 

As the stability of system Eq.(7) is equivalent to that of 
Eq.(5), we only need to study the impulsive 
stabilizability of system Eq.(7). For positive scalars β1 
and β2 satisfying β1<β2, define S(β1,β2)={{tk}; β1≤

tk−tk-1 ≤ β2}. To establish sufficient conditions for 
exponential stability of the impulsive system Eq.(5), 
we introduce the following stability definition. 

Definition 1  For given scalars β1 and β2 
satisfying β1<β2, system Eq.(5) is said to be  
Uniformly Exponentially Stable (UES) over S(β1,β2), if 
for any given e >0 and for any {tk}∈S(β1,β2), there exist 
constantsδ>0 andγ >0 such that for any initial function 
ψ∈PC([−τ,0],Bδ), we have 0( )

0( , , ) e t tt t γe − −≤z ψ , 
∀t≥t0 . 

2  Main Results 
In this section, we will combine piecewise 

differential Lyapunov techniques with the method of 
variation of parameters to investigate the exponential 
stability of the zero equilibrium of system Eq.(5). For 
this purpose, we introduce some piecewise differential 
functions. 

For given impulse time sequence {tk}∈S(β1,β2), 
we introduce the following two piecewise linear functions 
ρ, ν :[t0−τ, +∞ ]→R+ by ρ(t)=(tk+1–t)/(tk+1–tk) andν 
(t)=1/(tk+1–tk), for t∈[tk,tk+1], k∈N. It is easy to see that 
ρ(t)∈[0,1] and ν(t)∈[1/β2,1/β1], for t≥t0. Then there 
exists ρ2(t)∈[0,1] such that ν (t)=(1−ρ2(t))/β1+ρ2(t)/β2. 
Define ρ1(t)=ρ(t−τ(t)) if t−τ(t) ≥ t0 and ρ1(t)=1 if 
t−τ(t)<t0. 

Theorem 1  Consider impulsive system Eq.(5). 
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Assume that {tk}∈S(β1,β2). If there exist matrices Ps>0, 
diagonal matrices Dlsij>0, l=0,1,s,i, j=1,2, matrix Y, and 
positive scalars α, µ, λ0, κ, such that the following 
matrix inequalities hold: 

22 0 22

1

0

1

0

0 0 0
0 , , 1,2

* 0 2 0
* 0 0

sijsi s s

j sij

sij

sij

s i j
α

+ 
 

− +  < = −
 

−  

Ω P A D P B

P D
D

D
(8) 

T T
1 2 2

2

0
*
µ − +

< − 

P P C Y
P

         (9) 

λ0I≤Ps≤κλ0I,  s = 1, 2,        (10) 
where siΩ  =(−2+α/µ+lnµ/β2)Ps−(1/βi)(P2−P1), then 
system Eq.(5) with K= 1

2
−P Y is UES over S(β1,β2). 

Moreover, for any given positive scalar: 
1

1 2 21,3
min[1 / ( )]j jj

qδ δ κ µ −

=
< = + +A B     (11) 

there exists scalar γ∈(0,1) such that ψ∈PC([−τ,0],Bδ) 
implies 0( )(2)

0( , , ) / e t tt t γδ κ µ − −<z ψ , 
0( )( )

0( , , ) / e t tj t t q γκ µ − −<z ψ , 01,3, .j t t= ≥  

Proof  For given δ satisfying (11), by Eq.(8)～
Eq.(9), there exist scalar µ0∈(0,µ) and sufficiently 
small positive scalars γ, e0, such that the following 
inequalities hold: 

Ξsij= 

0 22 0 22
2

1

0

1

0
0 e 0 0
* 0 2 0
* 0 0

si s sij s

j sij

sij

sij

γτα −

+ 
 − + 
 −
 

−  

Ω P A D P B
P D

D
D

 

0      , , 1,2I s i je< − =                    (12) 
T T

0 1 2 2

2

0
*

µ − +
< − 

P P C Y
P

       (13) 

2 21,3
max[( e )]

1 j jj
qγτδ κδ

γ µ =
+ + <

−
A B   (14) 

where 0siΩ =(−2+2γ+α/µ0+lnµ0/β2)Ps−(1/βi)(P2−P1). 
For s,i,j∈{1,2}, define Ψs(t)=(1−ρ1(t))[(1−ρ2(t))Ψs11+ 
ρ2(t)Ψs21]+ρ1(t)[(1−ρ2(t))Ψs12+ρ2(t)Ψs22], sΩ (t)=(−2+ 
α/µ0+lnµ0/β2)Ps−ν(t)(P2−P1),Φ(t)=−αe−2γτ((1−ρ1(t))P1

+ρ1(t)P2): 

Γs(t)=

22 22( ) 0
0 ( ) 0 0
* 0 0 0
* 0 0 0

s s st
t

 
 
 
 
 
 

Ω P A P B
Φ

 

Ψs(t)=

0

1

0

1

0 0 0
0 0 0
* 0 2 0
0 0 0

sij

sij

sij

sij

 
 
 
 −
 

−  

D
D

D
D

 

Then by by Eq.(12), we have: 
Ξs (t) = Γs(t)+ Ψs(t)≤−e0I         (15) 

For any given initial function ψ∈PC([−τ,0],Bδ), let 
z(t)=z(t,t0,ψ). For the simplification of notion, we 
denote  z ( 2 ) ( t )  by w ( t )  and  se t  w ( t)= (w 1 ( t ) , 
w2(t),…,wm(t))T. Choose time-varying Lyapunov 
function V(t)=wT(t)P(t)w(t), where P(t)=(1−ρ(t))P1+ 
ρ(t)P2. Set U(t)= 02 ( )e t tγ − V(t) and ε= 0/κ µ δ . Note that 
z(j)(t) is continuous for t≥t0, j=1,3. Since ( )

0( )j t θ+z  
<δ<q, θ∈[−τ,0], j=1,3, it follows that there exists T>t0 
such that ( ) ( )j tz <q for t∈[t0−τ,T], j=1,3. Set T∗ =inf 
{t>t0,|z(j )(t)|<q, j=1,3}. We will prove T∗ =+∞. 
Otherwise, we will have T∗ <+∞, z(j)(t)<q for t∈[t0−τ,  
T∗ ], j=1,3, and either: 

z(1)( T∗ ) = q or z(3)( T∗ ) = q      (16) 
We assume that T∗ ∈[tk,tk+1] for some nonnegative 
integer k and set *

it =min{ti,T
∗ }. In the following, we 

will prove that: 
U(t)<λ0ε2   t∈[t0−τ,T

∗ ]          (17) 
To do this, we first prove that: 

U(t)<λ0ε2   t∈[t0−τ, *
1t ]           (18) 

It is noticed that for θ∈[−τ,0], by(10), 
U(t0+θ)≤V(t0+θ)=wT(t0+θ)P(t0+θ)w(t0+θ)<κλ0δ2=  

µ0λ0ε2<λ0ε2 
So it only needs to prove: 

U(t)<λ0ε2   t∈(t0, *
1t )          (19) 

Suppose not, there exists some t∈ (t0, *
1t ) such that 

U(t)≥λ0ε2. Set t*=inf{t∈[t0, *
1t ];U(t)≥λ0ε2}, then t*∈ 

(t0, *
1t ) and U(t*)=λ0ε2. Set t =sup{t∈[t0,t*]; U(t)≤

µ0λ0ε2}, then t ∈(t0,t*) and U( t )=µ0λ0ε2. For 
t∈[ t ,t*],U(t)≥µ0λ0ε2≥µ0U(t+θ),θ∈[−τ,0]. It is noted 
that for t∈[t0−τ,T

∗ ], system Eq.(5) becomes Eq.(7). It 
follows that for t∈[ t ,t*]: 
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w P w

w P w A g w
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]
0

2 T

2 ( ) T
1 1

2

e ( ( )) ( ( )) ( ( ) )
                 ( ) 2e ( )((1 ( )) ( )
                ( ) ( )) ( )

t t

t t t t t t
U t t t t
t t t

γτ

γ

α τ τ τ
µ ρ
ρ

−

−

− − − =
+ − +

w P w
ξ Γ

Γ ξ

 

(20) 
where µ1=−lnµ0/β2, ξT(t)=[wT(t) wT(t−τ(t)) gT(w(t)) 
gT(w(t−τ(t)))]. 

On the other hand, by the property of the 
activation function f(⋅), it is easy to see that for any 
h∈{1,2,…, m}: 

0≤wh(t)g(wh(t))−g2(wh(t))           (21) 
2 20 ( ( )) ( ( ( )))h hw t t g w t tτ τ− − −≤      (22) 

Set 1 2diag( , , , )m
lsij lsij lsij lsijD d d d=  , then 0h

lsijd ≥ , 
l=0,1,s, i,j=1,2, h=1,2,…,m. Let: 

1 2 11 2 21

1 2 12 2 22

( ) ( ) ( )

( ) ( ) ( )

h h h
ls ls ls

h h
ls ls

t t d t d

t t d t d

υ ρ ρ ρ

ρ ρ ρ

 = + + 
 + 

 



 

where ( ) 1 ( )i it tρ ρ= − , s,i=1,2. Using Eq.(21) ～
Eq.(22), we have: 

[ ]

0

0

0

2 ( )
01 02

1

2

2 ( )
11 12

1

2 2

2 ( )
1 1 2

0 e 2 ( ) ( ) ( ) ( )

( ) ( ( )) ( ( ))

e 2 ( ) ( ) ( ) ( )

( ( )) ( ( ( )))

e ( ) ( ) ( ) ( ) ( ) ( )

m
t t h h

h

h h h

m
t t h h

h

h h

t t T

t t t t

w t g w t g w t

t t t t

w t t g w t t

t t t t t t

γ

γ

γ

ρ υ ρ υ

ρ υ ρ υ

τ τ

ρ ρ

−

=

−

=

−

 + × 

 − + 

 + × 

 − − − = 
+

∑

∑







≤

ξ Ψ Ψ ξ

  

(23)

 

where ( ) 1 ( )t tρ ρ= − . Adding the right side of Eq.(23) 
to Eq.(20) gives: 

02 ( ) T
1( ) ( ) e ( ) ( ) ( )t tD U t U t t t tγµ −+ +≤ ξ Ξ ξ    (24) 

where Ξ(t)=(1−ρ(t))Ξ1(t)+ρ(t)Ξ2(t). By Eq.(15), we 
have Ξ(t)≤−e0I. Thus, by Eg.(24) and noticing that V(t)
≤κλ0

2( )tw , we obtain: 
D+U(t)≤(µ1−e0/(κλ0))U(t)   t∈[ t ,t*] 

which leads to: 
U(t*)≤exp((µ1−e0/(κλ0))β2)U( t )<λ0ε2 

This is a contradiction, so Eq.(18) holds. Now we 
assume that for some l∈N satisfying tl<T*, 

U(t)<λ0ε2   t∈[t0−τ,tl]          (25) 
we will prove that U(t)<λ0ε2 for t∈[tl ,tl+1]. If not, there 
exists some t∈[tl,tl+1] such that U(t)≥λ0ε2. Then, set 

t =inf{t∈[tl,tl+1];U(t)≥λ0ε2}. By Eq.(13) with Y=P2K 
and using Schur complement, we have (I+KC2)TP2(I+ 
KC2)≤µ0P1. It follows from ρ(tl)=1 and ( ) 0ltρ − =  
that: 

0
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−
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Then by Eq.(25), we obtain U(tl)<µ0λ0ε2. Thus t∈(tl , 
tl+1) and U( t )=λ0ε2. Set t =sup{t∈[tl, t ];U(t) ≤
µ0λ0ε2}. then U( t )=µ0λ0ε2. Moreover, we have U(t)≥
µ0λ0ε2≥µ0U(t+θ), for t∈[ t , t ] and θ∈[−τ,0]. Then 
applying the same argument of the proof on the 
interval [t0,t1], we obtain: 

U( t )≤exp((µ1−e0/(κλ0))β2)U( t )<λ0ε2 
which yields a contradiction. Therefore, U(t)<λ0ε2 for 
t∈[tl,tl+1]. 

By mathematical induction Eq.(25) holds for any 
l∈N. That is Eq.(17) holds, which implies that: 

0( ) *
0( ) e    [ , )t tt t t Tγe − −< ∈w        (26) 

By the method of variation of parameters, for t∈[t0,T*], 
we have: 

0
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j=1,3. Applying Eq.(26) to the above inequality and 
using Eq.(14), we get: 
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∈ =

z A B

A B
  (27) 

By the continuity of z(j)(t), the above inequality implies 
that ( ) *( )j T q<z for j=1,3, which contradicts Eq.(16). 
Therefore, T*=+∞. Combining Eg.(26) and Eq.(27) 
yields the exponent estimates of z(j)(t), j=1,2,3. Then 
the proof is complete. 

It is obvious that if Eq.(8)～Eq.(9) are feasible, 
then there exists positive scalars λ0 and κ such that 
Eq.(8) ～Eq.(10) are feasible. Thus, we have the 
following corollary. 

Corollary 1  Consider impulsive system Eq.(5). 
Assume that {tk}∈S(β1,β2). If there exist matrices Ps>0, 
diagonal matrices Dlsij>0, l=0,1,s,i, j=1,2, matrix Y, and 
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positive scalars α, µ, λ0, κ, such that the matrix 
inequalities Eq.(8)～Eq.(9) hold, then system Eq.(5) with 
K=P−1 Y is UES over S(β1,β2). 

Remark 2  Theorem 1 proposes a reduced-order 
impulsive control scheme for DCNNs (1). When the 
lower bound bound β1 and the upper bound β2 of the 
impulse intervals are known, the impulsive gain matrix K 
can be derived by solving the matrix inequalities Eq.(8)～
Eq.(9). Moreover, the impulsive gain matrix K is robust in 
the sense that the impulsive control law stabilize the zero 
equilibrium of system Eq.(5) for any {tk}∈S(β1,β2). 

Remark 3  When q=∞, the conditions in Theorem 
1 guarantee the zero equilibrium of system Eq.(5) to be 
globally exponentially stable. When q<∞, Theorem 1 
indicates that a subset of the domain of attraction of the 
zero equilibrium of system Eq.(5) is PC([−τ,0];Bδ). 

3  Numerical Example 
In this section, we present one example to 

illustrate the effectiveness of our results. 
Example 1:  Consider the DCNN (1) with 

0.5 0.1 0.1 0.2
0 0.8 0.3 0.2

0.1 0.2 0.6 0.7
0.2 0.2 0.1 0.8

A

 
 − =
 
 
− 

, 

0.8 0 0.1 0.1
0.1 0.2 0.1 0.2
0.1 0 0.6 0.3
0 0.1 0.2 0.5

 
 
 =
 
 
 

B , 

1.01
1.22
0.76
0.61

 
 
 =
 
 
− 

u  

One can verify that DCNN (1) has an isolated 
equilibrium point x*=(2,0.5,−0.3,−2.05)T. According to 
the equilibrium point x*, the index set N={1,2,3,4} can 
be divided into three index subsets: N1={1}, N2 ={2,3}, 
and N3={4}. Moreover, for some T>0, DCNN (1) on 
the interval [−τ,T] can be rewritten in the form of Eq.(7) 
with A12=[0.1 0.1], B12=[0 0.1], A32=[0.2 0.1], B32= 
[0.1 0.2], and 

A22=
0.8 0.3

0.2 0.6
− 

 
 

, B22=
0.2 0.1
0 0.6

 
 
 

 

To better illustrate the stability of x*, we have 
computed numerically the solutions of DCNN (1) with 
τ=1 starting from the neighborhood of x*, as shown in 
Fig. 1. One can see that all these trajectories go away 
from x*. This shows that the equilibrium x* is unstable. 

Now we assume that the system’s output 
is 2( ) ( )t t=y C x , where C2=[0 1], T

2 3( ) ( ( ), ( ))t x t x t=x . 
We will design an impulsive control law with the form of 

* *
2( ) ( )( ( ) )k kw t t−= + − +I KC w x x      (28) 

where {tk}∈S(0.4, 0.5), and *x =(0.5,−0.3)T. to 
stabilize the equilibrium x*. Applying Theorem 1 with 
the choice of α=µ=0.88, it has been found that the 
LMIs Eq.(8)～Eq.(9) are feasible and the derived 
impulsive gain matrix K=(−0.128 2,−1.000 4)T. The 
simulations of system (1) under the impulsive control 
law Eq.(28) with tk−tk−1=0.45 and τ(t)=1 are given in 
Fig. 2. One can see that under the reduced-order 
impulsive control law Eq.(28), the trajectories starting 
from the neighborhood of x* converge to x*. 
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t 

a. The trajectories of the state variable x1 
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x 1
 

0 2 4 6 8 10 12 14 16 18 20 
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b. The trajectories of the state variable x2 
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c. The trajectories of the state variable x3 
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−1 x 3
 

0 2 4 6 8 10 12 14 16 18 20 
t 

d. The trajectories of the state variable x4 

−1.5 

−2.0 x 4
 

 
Fig.1  Trajectories of the DCNN (1) starting from the 

neighborhood of x* 
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x1 
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a. The state variable x1 converging to 2 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
t 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
t 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
t 

0.6 
0.4 
0.2 

x2 

−0.2 

−0.4 
x3 

−1.6 
−1.8 
−2.0 
−2.2 

x4 

b. The state variable x2 converging to 0.5 

c. The state variable x3 converging to –0.3 

d. The state variable x4 converging to –2.05  
Fig.2  Trajectories of the DCNN (1) under impulsive control Eq. (28) 
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4  Conclusions 
This paper has investigated the impulsive 

stabilization problem for DCNNs via partial states. A 
piecewise differential Lyapunov function has been 
introduced to derive the sufficient condition for 
exponential impulsive stabilization via partial states. 
The sufficient condition is expressed in terms of linear 
matrix inequalities concerning the interconnected 
matrices and the bounds of the impulsive intervals. With 
the help of LMI solver, it is easy to check the existence of 
the impulsive control law via partial states for DCNNs. 
An example has demonstrated the effectiveness of the 
proposed impulsive stabilization scheme. 
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