
 第 40 卷 第 3 期 电 子 科 技 大 学 学 报 Vol.40 No.3
 2011年5月 Journal of University of Electronic Science and Technology of China May 2011

Computing Models and Algorithms for Complex Co-design Systems

YE Hua and WU Ji-gang

(School of Computer Science and Software, Tianjin Polytechnic University Xiqing Tianjin 300387)

Abstract Hardware/software (HW/SW) partitioning is a critical step in the design of complex embedded

system. The computing models and the corresponding algorithms for hardware/software partitioning reported in
recent years are summarized. The HW/SW partitioning is modeled as a variety of knapsack problems with different
constraints, where items in knapsack problems correspond to the blocks in partitioning problems, and the
communication cost between blocks is considered. Both exact algorithms and heuristic ones are introduced based
on different computing models. Some potential problems on research are listed for future work.

Key words algorithm; complex system; computing model; hardware/software partitioning

软硬件协同设计复杂问题的计算模型和算法

叶 华，武继刚
(天津工业大学计算机科学与软件学院 天津 西青区 300387)

【摘要】软硬件划分是设计复杂嵌入式系统的关键环节。论文综述了近年来提出的解决软硬件划分问题的计算模型和相

应算法。软硬件划分问题可以建模成各种限定不同约束条件的背包问题模型，同时需要考虑任务块间的通信消耗。背包问题

中的子项相当于软硬件划分问题中的任务块。论文针对不同的计算模型，介绍了相应的精确算法和启发式算法。论文最后探

讨了若干待研究的潜在问题。
关 键 词 算法; 复杂系统; 计算模型; 软硬件划分
中图分类号 TP301.6 文献标识码 A doi:10.3969/j.issn.1001-0548.2011.03.002

Received date： 2011 − 04 − 10
收稿日期： 2011 − 04 − 10
Foundation item: Supported by the National Natural Science Foundation of China under Grant(60970016)
基金项目：国家自然科学基金(60970016)
Biography：YE Hua was born in 1976, and her research interests include hardware/software co-design in embedded systems.
作者简介：叶 华(1976 −)，女，讲师，主要从事嵌入式系统软硬件协同设计方面的研究.

An embedded system is a system that has
embedded software and computer-hardware, which
makes it a system dedicated for an application or
specific part of an application, product or a part of a
larger system. Embedded systems typically consist of
application-specific hardware parts such as FPGAs or
ASICs, and programmable parts such as processors
like DSPs or ASIPs. In comparison with the hardware
parts, the software parts are much easier and faster to
develop and modify. Hardware, however, provides
better performance. For this reason, a system designer's
goal is a system that minimizes the weighted sum of
the software delay, hardware area, and power
consumption. The weights are determined by the user
according to the design preferences. Hardware/
software (HW/SW) co-design which has become one

of the primary applications of electronic system level
tools and methodologies is used to make hardware and
software work together to process the input as quickly
as they can. A critical issue in complex embedded
system co-design is to quickly find effective
hardware and software partitioning with good
complexity and performance estimations. The HW/SW
partitioning must satisfy power, delay, and area
measures while addressing salient factors such as the
communication cost and the inherent overhead in the
management of hardware resource.

There are many different academic approaches to
solve the HW/SW partitioning. The traditional
heuristics include hardware-oriented and
software-oriented approaches. The hardware-oriented
approach starts with a complete hardware solution and

 电 子 科 技 大 学 学 报 第 40 卷 334

iteratively moves parts of the system to the software as
long as the performance constraints are fulfilled[1-3],
while the software-oriented approach starts with a
software program moving pieces to hardware to
improve speed until the performance of the final
system meets the given constraint[4-6]. It has been
shown that the HW/SW partitioning is NP-hard for
most cases. Thus, many approaches for HW/SW
partitioning emphasize on the algorithmic aspects
proposed in recent years, e.g., simulated annealing
algorithm[4, 7-8], integer programming approaches[9-10],
and dynamic programming algorithm[11-12]. All these
algorithms can work perfectly within their own
co-design environments, but it is impossible to
compare them, because of the big differences in their
co-design environments and the lack of benchmarks[13].

The related architecture for HW/SW partitioning
is generally assumed to consist of single software and
single hardware unit[11, 14-19]. The system to be
partitioned is given in the form of a task graph or a set
of task graphs generally.

There are many models and algorithms for
HW/SW partitioning reported in recent years. This
paper can be considered as an up-to-date supplement,
reporting the most recent developments in the HW/SW
partitioning. The main objective of the paper is to
provide readers with an overview of the area, in the
context of a vision for models and algorithms on
HW/SW partitioning.

1 Computing Models and Algorithms
1.1 Knapsack Model and Algorithm

Hardware/software partitioning decides which
blocks of the system could be implemented in
hardware and which ones could be realized as software.
Hardware/software partitioning algorithm could be
considered the standard knapsack problem proposed in
Ref. [20]. The application of the embedded system is
considered to be broken down into blocks such that
each of them can be run simultaneously. So a set of
items 1 2{ , , , }nS p p p= is partitioned into hardware
and software. The symbols of ih and is denote the
time required for the block ip to be run in hardware
and software, respectively. The symbol of ia denotes

the area required for hardware implementation of
block ip , and the symbol A denotes the total area
available for hardware implementation. A vector

1 2[, , ,]nx x x= X such that {0,1}ix ∈ used to
denote the part ip is implemented in software or
hardware. The total running time of the application is
given by:

() max{ (), ()}T X H X S X= (1)
where H(X) is the total running time of the blocks
running in hardware and S(X) is the total running time
of the blocks in software. All the blocks that are
realized in hardware can be run parallelly and all the
software blocks are considered to be run serially. So
the formula (2) is got:

1

minimize ()

subject to
n

i i
i

T X
P

x a A
=

=

∑ ≤
 (2)

A set of items 1 2{ , , , }nS p p p= is sorted in
decreasing order of their hardware running time to get

1 2{ , , , }nS p p p′ ′ ′ ′= .
1

n

T i
i

S s
=

′= ∑ and i T iR S s′= − are

defined. Now the problem P is split into the following
n subproblems 1 2, , , nP P P . Formally, the
subproblem 1P is described as formula (3):

2
1

1
2

maximize

subject to

n

i i
i

n

i i
i

x s
P

x a A a

=

=

 ′ =
 −

∑

∑ ≤

 (3)

It is clear that 1P is the standard 0-1 knapsack
problem.

Let 1 1 1 1max{ , }L h R u′= − and 1 1 1 1max{ , }U h R l′= − ,
where 1l and 1u are the lower bound and the upper
bound on 1P , respectively. 1 1[,]L U is called the
bounded interval of 1P in the sense that the optimal
solution of 1P would lie in the range 1 1[,]L U .

The subproblem (1)kP k > is described as
follows:

1

1

maximize

subject to

n

i i
i k

k n

i i k
i k

x s
P

x a A a

= +

= +

 ′ =
 −

∑

∑ ≤

 (4)

The bounded intervals of subproblem kP are
max{ , }k k k kL h R u′= − and max{ , }k k k kU h R l′= − ,

where kl and ku are the lower bound and the upper

 第3期 叶华，等: 软硬件协同设计复杂问题的计算模型和算法 335

bound of total benefit of kP , respectively. The optimal
solution of kP would lie in the range [,]k kL U .

The outline of the algorithm, denoted as Alg_HSP,
for dealing with the hardware/software partitioning
problem, is given below:

Algorithm Alg_HSP
begin
1 BOUND: = 0;
2 Sort all the items to be partitioned in

decreasing order of their hardware running time;
3 Form the subproblems P(i), i = 1, 2, , n;
4 for : 1i = to n do
 begin

 4.1 calculate the upper bound ()U i and the
lower bound ()L i for ()P i ;

 4.2 if (() BOUNDL i >) then BOUND :=
()L i ;

 end for
5 while (there are subproblems left to be

solved)
 begin

 5.1 select the subproblem with the highest
lower bound;

 5.2 if (() BOUNDU i <) then reject this
subproblem;
else begin
solve this subproblem;

() :B i = benifit of the above solution;
if (() BOUNDB i >) then BOUND :=

()B i ;
 end if
 end
 end.

The proposed algorithm was simulated for

different problem sizes and area constraints.

Experimental results show that the large number of
subproblems, which do not contribute to optimal
solutions, could be eliminated rapidly by examining
the upper and lower bounds of the subproblems. The
proposed knapsack model does not include the
communication overheads, so the model would be
extended.
1.2 Area-efficient algorithm

HW/SW partitioning is a problem of improving
the area utilization, reducing power and accelerating
the execution of the embedded systems. Area
efficiency is one of the major considerations in
constraint aware HW/SW partitioning process. An
efficient heuristic algorithm with the objective of
minimizing area utilization under the constraints of
execution time and power consumption is proposed in
Ref.[21].

The efficient heuristic algorithm proposed is
based on the partitioning model employed [11]. Fig. 1
shows the corresponding computational model for
HW/SW partitioning.

a1 a2 a3 a4

B1 B2 B3 B4

1 1 s he e 2 2 s he e 3 3 s he e 4 4 s he e

1 1 s hp p 2 2 s hp p 3 3 s hp p 4 4 s hp p

Fig.1 The system model used by the partitioning algorithms

The given application of the system corresponds
to a sequence of n blocks, denoted as 1 2, , , nB B B ,
that may be moved between hardware and software.
The blocks may be functions or procedures, in which
the communication between the blocks can be omitted.
In order to yield the minimal area penalty while having
an execution time less than or equal to the given
constraint ε and having a total power consumption
less than or equal to the given constraint ρ , the
formulation (5) is got.

1

1 1

minimize
HSP

subject to [] [] and {0,1}

n

i i
i

n n
s s
i i i i i i i

i i

a x

e e x p p x xε ρ

=

= =

 − − ∈

∑

∑ ∑≤ ≤

 (5)

The following notations are used in the
formulation (5)

 ε denotes time constraint.
 ρ denotes power constraint.

 ia denotes the area penalty of moving iB to
hardware.

 s
ie denotes the execution time of iB in software

implementation. h
ie denotes the execution time of iB in

 电 子 科 技 大 学 学 报 第 40 卷 336

hardware implementation. ie denotes the execution
time saving of moving iB to hardware, i.e.,

s h
i i ie e e= − .
 s

ip denotes the power required by iB in software
implementation. h

ip denotes the power required
by iB in hardware implementation. ip indicates the
power saving of moving iB to hardware, i.e.,

s h
i i ip p p= − .

 A vector X=[x1, x2, , xn], where xi∈{0, 1},

denotes the part Bi is implemented in software or
hardware.

The area penalty of the solution is
1

n

i i
i

a x
=
∑ , the

corresponding execution time is
1

[()]
n

s s h
i i i i

i

e e e x
=

− −∑

and the power consumption is
1

[()]
n

s s h
i i i i

i

p p p x
=

− −∑ .

Let 1i ix y= − , the formulation (6) is got:

1

1 1

maximize
HSP

subject to and {0,1}

n

i i
i

n n

i i i i i
i i

a y

e y p y yε ρ

=

= =

 ′
 ′ ′ ∈

∑

∑ ∑≤ ≤

 (6)

The problem HSP′ is an extended 0-1 knapsack
problem, which is one of the most well-know
NP-complete problems.

HSP′ is an extension of KP, with an additional

constraint
1

n

i i
i

p y ρ
=

′∑ ≤ . So the heuristic algorithm for

solving the problem HSP′ would be extended. Let

1,1e =
 and ,i i

i
e pv
ε ρ

=
′ ′

 for 1, 2, ,i n= . HSP′

is reformulated as follows:

1

1

maximize

subject to {0,1}; 1,2, ,

n

i i
i

n

i i i
i

a y

v y e y i n

=

=

 ∈ =

∑

∑

≤

i

i

a
v

 is defined as the effective gradient of the

item i . The items is sorted according to their effective
gradient:

1 2

1 2

n

n

aa a
v v v

≥ ≥ ≥

Then, the proposed heuristic algorithm, which is
denoted as Alg_HA, is outlined as follows.
Algorithm Alg_HA
begin

1. Sort all items such that 1 2

1 2

n

n

aa a
v v v

≥ ≥ ≥ ;

2. e_used: =0, p_used: =0;
3. for i:= 1 to n do /* get the solution of

HSP′ */

 if (_ used 1iee
ε

+
′
≤) and (_ used 1ipp

ρ
+

′
≤)

 then : 1, _ used: _ used ,i
i

ey e e
ε

= = +
′

 _ used: _ used ipp p
ρ

= +
′

;

 else : 0iy = ;
4. for : 1i = to n do : 1i ix y= − ;
5. Output 1 2(, , ,)nx x x as the solution of HSP;

end.
The time complexity of the proposed heuristic

algorithm is dominated by the sorting process for the data
set of n elements, and thus bounded by O(n log n) [22].
The proposed heuristic algorithm Alg_HA is evaluated
by an exact algorithm Alg_EA. Both Alg_HA and
Alg_EA are simulated. The execution time and the
power consumption in software and hardware are
generated randomly in the simulation. The simulation
results show that area penalties decrease for the
problems with loose power constraints for a fixed time
constraint, and the approximate solutions are nearly
optimal.

With the development of profiling methodology,
the hot path would be considered in the HW/SW
partitioning model.
1.3 A New Model and Algorithm with

Communications Penalty
The communications penalty is omitted in most

algorithms which would be considered in a real
embedded system. A new computational model is
designed for the HW/SW partitioning problem in
Ref. [23]. Based on the new model, a new dynamic

 第3期 叶华，等: 软硬件协同设计复杂问题的计算模型和算法 337

programming algorithm is proposed which uses the
source data to calculate the optimal solution directly.
The new model proposed is based on the partitioning
model employed in Ref. [12]. Figure 2 extends this
model.

h1=2

0 0

4 5
6

3

3

2 1
2

3 2
6 4

0 0

h2=4

h3=3

h4=5

s1=12

s2=11

s3=10

s4=14

Entry

Exit

1
hB

2
hB

3
hB

4
hB

1
sB

2
sB

3
sB

4
sB

Fig.2 New model indicated by source execution time and all

communication time

The application of the system corresponds to a
sequence of n blocks, denoted as 1 2, , , nB B B , that
may be moved between hardware and software. The
solution corresponding to the optimal path is subjected
to the constraint of the available hardware area, and the
length of the optimal path is as short as possible, in
order to find the optimal path in a direct graph. In Fig.2,
the communication penalty is considered in the new
model.

The following notations are used in Fig. 2.
 ()h s

i iB B denotes the hardware (software)
implementation of block iB .

 is denotes the execution time of iB in
software, 1 i n≤ ≤ .

 ih denotes the execution time of iB in
hardware, 1 i n≤ ≤ .

 ia denotes the area penalty of moving iB to
hardware, 1 i n≤ ≤ .

 ()ss hh
i ic c denotes the communication time

between iB and 1iB + if both blocks are assigned to
software(hardware), 1 i n<≤ .

 ()sh hs
i ic c denotes the communication time

between iB and 1iB + if iB is assigned to software
(hardware) and 1iB + is assigned to hardware
(software), 1 i n<≤ .

The new model considers all types of the

communications derived from all possible HW/SW
assignments of the neighboring blocks, utilizing the
source data, rather than the extra speedup as mode of
measurement.

Given available hardware area A , the partitioning
problem can be modeled as the following problem:

1

1

 maximize ()
:

 subject to

n

i i i
i
n

i i
i

s h x
P

a x A

=

=

 −
′

∑

∑ ≤

 (7)

It is clear that P’ is the standard 0-1 knapsack
problem of NP-complete [24].

The new algorithm for partitioning, called
Alg_NAP, assigns one block at a time but is based on
the new computational model as shown in Fig. 2. The
Alg_NAP can be formalized to the following formula (8):
 1

1

1

1

1

1

_ sw(1,)
_ hw(,0) , for 1,2, ,

, for
_ hw(1,)

,otherwise

_ sw(1,)
_ sw(,) min

_ hw(1,)

,for

_ hw(,) _ sw(1,)
min

_ hw(1,)

ss
k k

hs
k k

k

sh
k k k

k

E a s
E k k n

a a
E a

h

E k a c s
E k a

E k a c s

a a

E k a E k a a c h
E k a a

−

−

−

=
= +∞ =

+∞ <
=

 − + +=

− + +
+∞ <

= − − + +

− − +

1

_ op(,) min{ _ sw(,), _ hw(,)}
 2,3, ,

hh
k kc h

E k a E k a E k a
k n

−

 +

=
=

(8)
The following notations are used in formula (8).
 _ op(,)E k a denotes the optimal execution time

achievable by moving some or all the blocks from

1 2, , , kB B B to hardware of size a .
 _ sw(,)E k a denotes the execution time

achievable by keeping kB in software and moving some
or all the blocks 1 2 1, , , kB B B − to hardware of
size a . _ sw(,)E k a recursively depends on

_ sw(1,)E k a− and _ hw(1,)E k a− , because 1kB − has
two possible assignments, each for the case of software
and hardware, and the hardware area will not be
occupied by block kB .

 _ hw(,)E k a denotes the execution time
achievable by moving kB to hardware and then moving
some or all blocks from 1 2 1, , , kB B B − to
area ka a− . _ hw(,)E k a recursively depends

 电 子 科 技 大 学 学 报 第 40 卷 338

on _ sw(1,)kE k a a− − and _ hw(1,)kE k a a− −
because 1kB − has two possible assignments, and the
hardware area()ka has been occupied by block kB .

For formal description, see Ref.[23]. Simulation
results show that the execution time of both algorithms
increases with the number of the blocks in linear for a
given hardware area A, and increases with the
hardware area also in linear for a given number of the
blocks. The execution time of the two algorithms also
matches their time complexity ()O nA . Because
Alg_NAP takes into account all types of the
communications, Alg_NAP is able to solve the
HW/SW partitioning problems more realistically than
SPACE.
1.4 Power-efficient algorithm

Although there are several HW/SW partitioning
techniques proposed over the last decade in which
minimizing the execution time of the system is mainly
considered, power efficiency is ignored or appears as
one of the constraints which is one of the major
considerations in the current HW/SW co-designs. A
new model with objective of minimizing power
consumption under the constraints of hardware area
and execution time is proposed in Ref. [25]. An
efficient heuristic algorithm with the execution time

(log)O n n is proposed for the quality approximate
solutions of the problems with n code fragments.

The efficient heuristic algorithm proposed is
based on the partitioning model employed[26]. Fig. 3
shows the corresponding computational model for
HW/SW partitioning with four blocks.

B1 B2 B3 B4

1

1

4
6

a
p

=
=

1

1

20

6

s

h

e
e

=

=

2

2

2
2

a
p

=
=

3

3

1
9

a
p

=

=
4

4

3
12

a
p

=
=

2

2

19

12

s

h

e
e

=

=
3

3

2

1

s

h

e

e

=

=
4

4

9

1

s

h

e
e

=

=
Fig.3 An example of the system model with four blocks

The given application of the system corresponds
to a sequence of n blocks, denoted as 1 2, , , nB B B ,
which may be moved between hardware and software.
The blocks may be functions or procedures, in which
the communication between the blocks can be omitted.

The following notations are used in Fig. 3.
 ia denotes the area penalty of moving iB to

hardware.
 s

ie denotes the execution time of iB in

software implementation.
 h

ie denotes the execution time of iB in
hardware implementation.

 ie denotes the execution time saving of moving

iB to hardware, i.e., s h
i i ie e e= − .

 s
ip denotes the power required by iB in

software implementation.
 h

ip denotes the power required by iB in
hardware implementation.

 ip denotes the power saving of moving iB to
hardware, i.e., s h

i i ip p p= − .
The model discussed above focuses on yielding

the minimal power consumption while having a total
area penalty less than or equal to the available
hardware controller area A and having an execution
time less than or equal to the given constraint ε . Let

1 2[, , ,]nX x x x= , where {0,1}ix ∈ , be a feasible
solution of the partitioning problem which indicates
the part iB is implemented in software or hardware.

The model proposed can be formulated as the
following maximization problem ρ for the
given A and ε :

1

1 1

maximize

subject to and {0,1}

n

i i
i

n n

i i i i i
i i

p x

a x A e x x
ρ

ε

=

= =

 ′ ∈

∑

∑ ∑≤ ≥

The larger the hardware area is, the shorter the
execution time is, while the higher the power becomes
generally. Usually the given constraints are loose
enough to provide large space of the feasible solutions.
So the program ρ is reduced to the 0-1 knapsack
problem as follows:

1

1

maximize

subject to {0,1}; 1,2, , .

n

i i
i

n

i i i
i

e x

a x C x i n

=

=

 ∈ =

∑

∑ ≤

The heuristic algorithm, denoted as Alg_HEU and
based on the model proposed, is outlined as follows.
Algorithm Alg_HEU
begin
for : 1i = to n do :iq = the power rank of iB ;
/*by sorting blocks into non-increasing order

according to i

i

p
a

*/

 第3期 叶华，等: 软硬件协同设计复杂问题的计算模型和算法 339

for : 1i = to n do :it = the power rank of iB ;
/*by sorting blocks into non-increasing order

according to i

i

e
a

*/

for a := 0 step 0.1 to 1 do
 begin

3.1 for : 1i = to n do (1)i i ir a q a t= ⋅ + − ;
3.2 repeat

 Move the block with the smallest ir to
hardware;

 until A is used up or no block fits for the
residual area;

3.3 Update the current solution 1 2(, , ,)nx x x
according to its power-saving;

 end
end.

The time complexity of the proposed heuristic
algorithm is dominated by the sorting process for the
data set of n elements, and thus bounded by

(log)O n n [24].
The proposed heuristic algorithm Alg_HEU is

evaluated by an exact algorithm Alg_DPP. Both
Alg_HEU and Alg_DPP are simulated. The simulation
results show that the power saving becomes higher and
higher for both Alg_DPP and Alg_HEU under the
same time constraint with the increase of the available
hardware area. The proposed heuristic algorithm
Alg_HEU, running in (log)O n n , is faster than the
proposed exact algorithm Alg_DPP running in

()O nAε for n code fragments under the hardware area
constraint A and the time constraint ε . Moreover, the
algorithm Alg_HEU is able to get nearly optimal
solution for small-sized problems, and thus it is
reasonable to believe that the Alg_HEU is applicable
to the large problem sizes in the HW/SW partitioning.
1.5 Functional Partitioning and Scheduling Algorithms

HW/SW partitioning decides which blocks of the
given system could be implemented in hardware and
which ones could be realized as software. HW/SW
scheduling is the ordering of partitioned tasks in each
processing element in such a way that a good processor
utilization is achieved, and communication time between
both internal tasks and inter-processor tasks is
optimized[27-29]. It is well-known that partitioning and

scheduling are the crucial steps during HW/SW
co-design. The efficient heuristic algorithms for HW/SW
partitioning and scheduling based on the architecture and
constraints described[30] are proposed [31]. The proposed
algorithms for partitioning and scheduling are
combined. The proposed partitioning algorithm is
based on a task graph [30] by iteratively moving the task
with highest benefit-to-area ratio in higher priority. The
proposed scheduling algorithm carries out the task
based on hardware-only critical path in higher priority
in task graph.

The proposed algorithms in Ref. [31] are based on
task graphs described in Ref. [30]. A task graph is a
directed acyclic graph (DAG) (,)G T E= , where T is
the set of the tasks 0 1{ , , , }nt t t , and E is the set of
directed edges. In the task graph, each task node
defines a functional unit of the program, which
contains information about the computation the task
needs to perform. A directed edge (,)i jt t in E defines
an immediate precedence constraint between task it
and task jt , in which (,)i jt t indicates that task jt
cannot start until task it is finished. Here, it is
called a predecessor of jt , and jt is called a successor
of it [30].

The following notations are used in the model and
algorithms.

 ()P u : the set of all predecessors of u ;
 ()S u : the set of all successors of u ;
 us : the execution time of u in software, called

software time in short;
 uh : the execution time of u in hardware, called

hardware time in short;
 (,)c u v : the communication penalty between u

and v , that is taken to send or receive data utilizing
bus for the shared memory, the software and the
hardware;

 ((),)c P v v : the total communication penalty of
v with all its predecessors. ((),)c P v v is defined as
follows:

()

()

(,) if is a software task
((),)

max { (,)} if is a hardware task
u P v

u P v

c u v v
c P v v

c u v v
∈

∈

 =

∑

Given available hardware area A , the partitioning
problem proposed can be formularized as the following
minimization problem:

 电 子 科 技 大 学 学 报 第 40 卷 340

1 2

1

minimize (, , ,)
:

subject to .

n

n

i i
i

E x x x
P

a x A
=

∑

≤

Let 1 2(, , ,)nx x x , where {0,1}ix ∈ , denote the
task it is implemented in software or hardware. Let

1 2(, , ,)nE x x x be complete time corresponding to

1 2(, , ,)nx x x .
The proposed partitioning algorithm deals with

the communication penalty, which is an important
factor for HW/SW partitioning, among tasks by
merging it into the processing time of the tasks.
Software tasks can communicate with others
sequentially, and hardware tasks do concurrently in the
DAG. The vs ′ and vh ′ are formularized as follows:

()

: (,)v v
u P v

s s c u v
∈

′ = + ∑ (9)

()
: max (,)v v u P v

h h c u v
∈

′ = + (10)

The task graph G is reduced to G′ by utilizing
formula (9) and (10).

The benefit of moving the task v to hardware is
denoted as vb , and the set of software tasks (including
v) lying in the same precedence level of the software
task v is denoted as vT . vb is defined as follows:

{ }

, if

otherwise

v

v

v v u
u T v

v
u v

u T

s h s
b

s h
∈ −

∈

′ ′ ′

=
′ ′−

∑

∑

≤

 (11)

The proposed heuristic algorithm, denoted as
Alg_HA, is outlined as follows.

Algorithm Alg_HA
/* Heuristic Algorithm for Partitioning */
begin

1 area _ used: 0;= /* initializing */
1 2

1 2

(, , ,) : (0,0, ,0)
sw _ task _ set { , , }

n

n

x x x
t t t

=

=

2 Reduce the original task graph G to G′

according to formulas (9) and (10);

3 for : 1i = to n do : i
i

i

be
a

= ; /* Initialize

efficiency, based on formula (11) for ib */

4 repeat
 4.1 :kt = the task with the maximum

efficiency in sw _ task _ set ;
 4.2 if area _ used ka A+ ≤ then

 begin
 : 1;kx = /* mark kt as a hardware task */
 area _ used : area _ used ;ka= +
 sw _ task _ set : sw _ task _ set { };kt= −
 Update efficiencies for software tasks lying

in the same level of kt ;
 end
 until area _ used A= or sw _ task _ set empty= ;
end.

The communication penalty and the
parallelizability between hardware tasks are taken into
consideration in the scheduling algorithms proposed.
The task scheduling is according to the task's priority.
The algorithm calculates priorities for each task based
on dynamic programming. In order to enhance the
parallelism of the hardware tasks, the software task
with highest priority, especially lying in the
hardware-only critical path, is generally taken into the
first consideration [31].

Let the task u denote a predecessor of the v , then
the communication factor of v corresponding to u ,
denoted as cof (,)u v , is defined as follows:

()

(,) if is a software task
cof (,)

max { (,)} if is a hardware taskw P v

c u v v
u v

c w v v∈

 =

The software tasks are scheduled according to the
priorities. The priority of u , denoted as ()pri u , is
formularized as follows:

()

()

max {pri() cof (,)} if is a software task
pri()

max {pri() cof (,)} if is a hardware task
v S u

v S u u

v u v u
u

v u v h u
∈

∈

+ = + +

The following notations are defined in the

scheduling algorithms.
 ready _ time()v : The ready time of v is

defined as ()max {end _ time()}u P v u∈ ;
 start _ time()v : The start time of v is defined

as the time when v is executed.
 end _ time()v : The end time of v is defined as

the time when v is finished. end _ time()v =
start _ time()v + execution-time of v .

The proposed scheduling algorithm which is

 第3期 叶华，等: 软硬件协同设计复杂问题的计算模型和算法 341

denoted as Alg_CPCS(G) is outlined as follows:

Input: task graph G ;
Output: complete_time, the complete time of G ;
Algorithm Alg_CPCS(G);
/*Critical-Path and Communication Combined
Scheduler*/
/* All communication times related to 0t are set to 0. */
/* The initial values of ready_time(it), start_time(it)
and end_time(it) are set to 0 for all i n≤ .*/
begin

1 0active _ set : { };t= /* initialize the active_set */
2 sw _ proc _ time : hw _ proc _ time : 0;= =

/*initialize processing time of software/
hardware task*/

3 Call 0pri()t to calculate the priorities for all
tasks;

4 while active _ set null≠ do
begin

 :v = the task of highest priority in active _ set ;
 /*execute software task v */
 SWEXE(,sw _ proc _ timev);
 UPDATS(,active _ setv);/*update active_set */

end
5 complete_time:=max{sw_proc_time, hw_proc_

time};
end.

For more details on algorithm Alg_CPCS(G), see
Ref. [31].

Both Alg_HA and Alg_CPCS are simulated and
compared with the previous algorithms as shown in
Ref. [30]. The simulation results show that the
proposed partitioning algorithm is comparable with the
best combinatorial algorithm, and the proposed
scheduling algorithm obtains the improvements over
the traditional approaches by up to 10% without large
increase in running time.
1.6 Algorithms for Path-based Hardware/Software

Partitioning
With the development of profiling methodology,

many powerful path profiling techniques have been
reported in Refs. [32-34]. One path of higher execution
frequency, called hot path which consists of the
executed components with high frequency, dominates

the whole execution time of the given application. The
HW/SW partitioning for the given application can be
approximately solved by efficiently partitioning the
selected hot path. A path-based HW/SW portioning
algorithm is proposed in Ref. [35], which is based on
an extended computing model in which
communication penalties between neighboring
components are considered. In addition, an efficient
tabu search algorithm is also implemented to refine the
approximate solutions produced by the heuristic
algorithm.

The model, as shown in Fig.2, takes all kinds of
the communication time into account, no matter how
the blocks implement.

The execution time can be formularized as:
1

1 2
1 1

(, , ,) ((1))
n n

n i i i i i
i i

E x x x x h x s C
−

= =

= + − +∑ ∑

where iC indicates the communication time between

iB and 1,1 1iB i n+ < < − .
The partitioning model discussed is outlined as

follows:

1 2

1

minimize (, , ,)
:

subject to {0,1}; 1,2, ,

n

n

i i i
i

E x x x
P

a x A x i n
=

 ∈ =

∑

≤

The problem P is able to be reduced to the
following 0-1 knapsack problem based on the
well-known heuristic strategy [24, 26, 36]:

1

1

maximize ()

subject to {0,1}; 1,2, ,

n

i i i
i

n

i i i
i

s h x

a x A x i n

=

=

 −

 ∈ =

∑

∑ ≤

Let i i ip s h= − , where ip is called the profit of
the block iB . The communication profit for moving

iB to hardware, denoted as iδ , is defined as:
comm _ sw() comm _ hw()i i iB Bδ = − ,

where comm _ sw()(comm _ hw())i iB B indicates the
communication time of iB to its neighbor(s) when iB
is assigned to software(hardware). The profit-to-area

ratio of the block iB is i i

i

p
a

δ+ , for 1,2, ,i n= .

The heuristic algorithm, denoted as Alg_HEA, is
outlined below.

Algorithm Alg_HEA
/* A heuristic algorithm for HW/SWpartitioning, for

 电 子 科 技 大 学 学 报 第 40 卷 342

the given n blocks and the available hardware area A. */
begin

/* calculate the profit-to-area ratios for each block */

1 for : 1i = to n do : i i
i

i

p
a

δσ +
= ;

2 1 2: {}; : { , , , };nB B BζΗ = = /* ()ζΗ
indicates the block set assigned to hardware
(software)*/

1 2: 1; residual _ area : ;(, , ,) : (0,0, ,0);nk A x x x= = =
3 repeat

 3.1 :rB = the block with max { }
iB iζ σ∈ ;

 /* select the block with the maximum profit-to-area
ratio in the set ζ */
 3.2 if (residual _ areara ≤) and (0rσ >) then

/* block rB fits in the residual area */
 begin
 : 1;rx = /* Assign block rB to hardware */
 : { }rBΗ = Η /* update Η */
 Update 1(1)r if rσ − > and 1()r if r nσ + < ;
 residual _ area : residual _ area ra= − ;
 end;
 3.3 : 1k k= + ;
 3.4 : { };rBζ ζ= − /* update ζ */

until (residual _ area 0≤) or (k n>);
4 Output 1 2(, , ,)nx x x ;

end.
The time complexity of the algorithm Alg_HEA is

bounded by (log)O n k n+ .
Tabu Search(TS) is one of the traditional

heuristic-based algorithms to search for the global
optimal solution for NP-hard problems [34-35]. A TS
algorithm, denoted as Alg_TSA, is implemented to
refine the heuristic solution generated by Alg_HEA.
For more details on Alg_TSA, see Ref. [35].

A dynamic programming algorithm, denoted as
Alg_DPA, is proposed to calculate the optimal solution
of the problem P, in order to evaluate the performance
of the algorithms Alg_HEA and Alg_TSA. The
algorithms Alg_HEA, Alg_TSA and Alg_DPA are
simulated.

The simulation results show that the heuristic
algorithm Alg_HEA can be refined by Alg_TSA (heur)
to a nearly optimal one, both for the
computation-intensive case and for the

communication-intensive case. The Alg_HEA is a fast
algorithm to approximately solve the problem P, while
the tabu search algorithm Alg_TSA can refine the
approximate solution to a nearly optimal one within an
acceptable runtime. The difference between the
approximate solutions and the optimal ones is bounded
by 0.5%, and it hardly increases with the increase of
the problem size.
1.7 One Dimensional (1D) Search Algorithm

A model which was designed as an undirected
communication graph for the embedded system to
partitioned was proposed in Ref. [39]. Based on the
model, a heuristic algorithm was proposed for the
NP-hard version by searching a 2D solution space to
obtain high quality candidate partitions. A type of
hardware/software partitioning problems have been
transformed into a 1D search problem in Ref [40],
instead of a 2D search problem as described in Ref.
[39]. Three low-complex algorithms are proposed with
the lower bound of the solution quality for the
hardware/software partitioning problem based on the
new computing model.

The model proposed in Ref. [39] is based on the
following notations.

An undirected graph 1 2(,), { , , , }nG V E V v v v= = ,
, :s h V IR+→ , and :c E IR+→ . ()is v (or simply is)

and ()ih v (or ih) denote the software and hardware
cost of node iv , respectively, while (,)i jc v v (or ijc)
denotes the communication cost between iv and jv if
they are in different contexts.

Two versions of the partitioning problem were
modeled in Ref. [39, 41].

Problem 0ρ . Given a graph G with the cost
functions s , h , and c , and the constants

, , 0α β γ ≥ , find a HW/SW partition P with minimum

PT .
Problem ρ . Given a graph G with the cost

functions s , h , and c , and 0R≥ , find a
HW/SW partition P with P PS C R+ ≤ that
minimizes PH among all such partitions.

The problem ρ could be converted into a 2D
search problem. Based on the knapsack model, the
problem ρ can be formulated as the following
maximization problem Q for the given R :

 第3期 叶华，等: 软硬件协同设计复杂问题的计算模型和算法 343

1

1

maximize

subject to () {0,1} 1,2, ,

n

i i
i

n

i i i
i

h x
Q

s x C x R x i n

=

=

 + ∈ =

∑

∑ ≤

Let 0 ()C x R< < hold for any feasible solution x.
Each feasible solution of Q corresponds to a feasible
partition of the problem ρ . Each feasible partition of
the problem ρ corresponds to a such that

()C x Rµ= ⋅ , where 0 1µ< < . Therefore, the problem
Q is converted to Q′ as follows:

1

1

maximize

subject to (1) and {0,1}

n
i ii

n
i i ii

h x
Q

s x R xµ
=

=

 ′
 − ∈

∑
∑ ≤

Thus, the HW/SW partitioning problem is
approximately solved by searching 1D solution space.

Three algorithms, including Alg-new1, Alg-new2
and Alg-new3, for the problem ρ are proposed based
on 1D search problem for the problem ρ . Alg-new1
only collects the feasible solutions of the problem Q
for the final approximate optimal solution. Alg-new2,
as an improved version for Alg-new1, is proposed in
order to further promote the solution quality. The third
algorithm, denoted as Alg-new3, is proposed to
accelerate Alg-new2 while keeping the solution with
higher quality. The following pseudocode shows the
formal description of the Alg-new3.

Algorithm. Alg-new3
/*Searching 1D solution space (0, 1), from 1 to 0

with decrement µ∆ , to find an approximate optimal
solution of the problem Q .*/
begin

1 best _ so _ far : 0; : 1; : 0.02; left : 0;µ ε= = = =
right : 1;= /*initializing*/

2 Sort nodes { }i i nv ≤ according to

1 2

1 2

n

n

hh h
s s s

≥ ≥ ≥ .

3 repeat /*find the starting point with binary
search approach*/

3.1 middle : (left right) / 2= + ;
3.2 :x a′ = greedy solution of Q′ with

middle;
3.3 if x′ is a feasible solution of Q

 then right:=middle else left:=middle;

until right left µ− < ∆ ;
4 : rightµ = ;
5 repeat

5.1 x a′ = greedy solution of Q′ with µ ;
5.2 if x′ is a feasible solution of Q then
 begin

 5.2.1 if x′ is better than best _ so _ far
 then best _ so _ far : x′= ;
 5.2.2 Reset µ∆ ; /*set µ∆ to initial

value */
 end
 else begin /*local search to test the
neighbors of x′ */
 5.2.3 for : 1i = to n do
 begin
 :y = the i th neighbor of x′ ;
 if (y is a feasible solution of Q) and

(y is better than best _ so _ far)
 then best _ so _ far: y= ;
 end of for;
 5.2.4 : (1)µ ε µ∆ = + ∆ ;/*increase µ∆ ,

accelerate search */
 end of else;
 end of if;

5.3 :µ µ µ= − ∆ ;
 until 0µ < ;

6 output best _ so _ far ;
end.
It is proved that Alg-new3 runs in

(log (log)())O n n d d n m+ + + time in the worst case,
where , ,n V m E= = and 1 /d µ= ∆ .

The algorithm Alg-new1, Alg-new2, Alg-new3,
and the algorithm proposed in Ref. [39] have been
implemented in C++. The empirical results show that
the proposed three algorithms provide significant
speedup in searching for approximate optimal
solutions. These algorithms can produce better
solutions with improvement of 14 percent on average
and up to 50 percent for best cases. Moreover, the time
complexity for partitioning a graph with n nodes and
m edges is significantly reduced from 3()x yO d d n to

(log ())O n n d n m+ + , where d and x yd d⋅ are
the number of the fragments of the searched 1D
solution spaces. Also, the proposed lower bound is

 电 子 科 技 大 学 学 报 第 40 卷 344

comparable to the old one proposed in Ref. [39].

2 Conclusion
We have provided a general view for HW/SW

partitioning problem on different computing models.
Different computing models and the corresponding
algorithms are introduced for the HW/SW partitioning
with different constraints. In addition, some potential
problems on the complex system design have been
proposed in this paper for future work.

References

[1] GUPTA R K, COELHO C N, DE MICHELI G. Synthesis
and simulation of digital systems containing interacting
hardware and software components[C]//Proc the 29th
ACM/IEEE Design Automation Conference. Los Alamitos,
CA, USA: ACM Press, 1992: 225-230.

[2] GUPTA R K, DE MICHELI G. Hardware-software
cosynthesis for digital systems[J]. IEEE Design and Test of
Computers, 1993, 10 (3) : 29-41.

[3] NIEMANN R, MARWEDEL P. Hardware/software
partitioning using integer programming[C]//Proc the
IEEE/ACM European Design Automation Conference
(EDAC). Paris, France: IEEE Computer Society Press, 1996:
473-479.

[4] ERNST R, HENKEL J, BENNER T. Hardware-software
co-synthesis for micro-controllers[J]. IEEE Design and Test
of Computers, 1993, 10 (4): 64-75.

[5] VAHID F, GAJSKI D D, GONG J. A binary-constraint
search algorithm for minimizing hardware during
hardware/software partitioning[C]//Proc IEEE/ACM
European Design Automation Conference (EDAC). Paris,
France: IEEE Computer Society Press, 1994: 214-219.

[6] VAHID F, GAJSKI D D. Clustering for improved
system-level functional partitioning[C]//Proc the 8th
International Symposium on System Synthesis. Cannes,
France: ACM Press,1995: 28-33.

[7] PENG Z, KUCHCINSKI K. An algorithm for partitioning of
application specific system[C]//Proc of IEEE/ACM
European Design Automation Conference (EDAC). Paris,
France: IEEE Computer Society Press, 1993: 316-321.

[8] HENKEL J, ERNST R. An approach to automated
hardware/software partitioning using a flexible granularity
that is driven by high-level estimation techniques[J]. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 2001, 9(2): 273-289.

[9] NIEMANN R, MARWEDEL P. An algorithm for
hardware/software partitioning using mixed integer linear
programming[J]. Design Automation for Embedded Systems,
1997, 2 (2): 165-193.

[10] WEINHARDT M. Integer programming for partitioning in
software oriented codesign[C]//Proceedings of the 5th
International Workshop on Field-Programmable Logic and
Applications. London: Springer-Verlag,1995: 227-234.

[11] MADSEN J, GRODE J, KNUDSEN P V, et al. LYCOS:
the lyngby co-synthesis system[J]. Design Automation for
Embedded Systems, 1997, 2(2): 195-235.

[12] WU Ji-gang, SRIKANTHAN T. Low-complex dynamic
programming algorithm for hardware/software
partitioning[J]. Information Processing Letters, 2006, 98(2):
41-46.

[13] EDWARDS S, LAVAGNO L, LEE E A, et al. Design of
embedded systems: formal models validation, and
synthesis[J]. Proceedings of the IEEE, 1997, 85 (3):
366-390.

[14] O’NILS M, JANTSCH A, HEMANI A, et al. Interactive
hardware-software partitioning and memory allocation
based on data transfer profiling[C]//Proc Int’l Conf Recent
Advances in Mechatronics. Turkey: Bogazici University
Publication, 1995: 447-452.

[15] SRINIVASAN V, RADHAKRISHNAN S, VEMURI R.
Hardware/software partitioning with integrated hardware
design space exploration[C]//Proc Conf Design,
Automation and Test in Europe. Paris, France: IEEE
Computer Society Press, 1998: 28-35.

[16] DICK R P, JHA N K. MOGAC: a multiobjective genetic
algorithm for hardware-software cosynthesis of
distributed embedded systems[J]. IEEE Trans.
Computer-Aided Design of Integrated Circuits and
Systems, 1998, 17(10): 920-935.

[17] HENKEL J, ERNST R. An approach to automated
hardware/software partitioning using a flexible granularity
that is driven by high-level estimation techniques[J]. IEEE
Trans. Very Large Scale Integration Systems, 2001, 9(2):
273-290.

[18] GRODE J, KNUDSEN P V, MADSEN J. Hardware
resource allocation for hardware/software partitioning in
the LYCOS system[C]//Proc Conf Design, Automation and
Test in Europe. Paris, France: IEEE Computer Society
Press, 1998: 22-27 .

[19] LOPEZ-VALLEJO M, LOPEZ J C. On the
hardware-software partitioning problem: system modeling
and partitioning techniques[J]. ACM Transactions on
Design Automation of Electronic Systems, 2003, 8(3):
269-297.

[20] RAY A, WU Ji-gang, SRIKANTHAN T. Knapsack model
and algorithm for hardware/software partitioning
problems[J]. Computing and Informatics, 2004, 23(5):
1001-1013.

[21] WU Ji-gang, SRIKANTHAN T. Algorithmic aspects of
area-efficient hardware/software partitioning[J]. The
Journal of Supercomputing, 2006, 38(3):223-235.

[22] KNUTH DE. The art of computer programming (Volume
3), Sorting and Searching[M]. 2nd ed. USA:
Addison-Wesley Professional, 1998: 74-81.

[23] WU Ji-gang, SRIKANTHAN T, ZOU G W. New model
and algorithm for hardware/software partitioning[J].
Journal of Computer Science and Technology, 2008, 23(4):
644-651 .

[24] PISINGER D. Algorithms for knapsack problems[D].
Copenhagen: University of Copenhagen, 1995.

 第3期 叶华，等: 软硬件协同设计复杂问题的计算模型和算法 345

[25] WU Ji-gang, SRIKANTHAN T, YAN Cheng-bin.
Algorithmic aspects for power-efficient hardware/software
partitioning[J]. Mathematics and Computers in Simulation,
2008, 79(4): 1204-1215.

[26] MARTELLO S, TOTH P. Knapsack problems: algorithms
and computer implementations[M]. New York: John Wiley
& Sons Inc, 1990: 197-210.

[27] TAHAEE S-A, JAHANGIR A H. A polynomial algorithm
for partitioning problems[J]. ACM Transactions on
Embedded Computing Systems, 2010, 9(4):1-38.

[28] YUAN Ming-xuan, GU Zong-hua, HE Xiu-qiang, et al.
Hardware/software partitioning and pipelined scheduling
on runtime reconfigurable FPGAs[J]. ACM Transactions
on Design Automation of Electronic Systems, 2010, 15(2):
1-41.

[29] ALI U, MALIK M B. Hardware/software co-design of a
real-time kernel based tracking system[J]. Journal of
Systems Architecture, 2010, 56(8): 317-326.

[30] WIANGTONG T, CHEUNG P Y K, LUK W. Comparing
three heuristic search methods for functional partitioning in
hardware-software codesign[J]. Design Automation for
Embedded Systems, 2002, 6(4):425-449.

[31] WU Ji-gang, SRIKANTHAN T, JIAO Tao. Algorithmic
aspects for functional partitioning and scheduling in
hardware/software co-design[J]. Design Automation on
Embedded Systems, 2008, 12(4): 345-375.

[32] BALL T, LARUS J R. Efficient path profiling[C]//Proc of
the 29th Annual ACM/IEEE International Symposium on
Microarchitecture. Washington: IEEE Computer Society,
1996: 46-57 .

[33] DUESTERWALD E, BALA V. Software profiling for hot
path prediction: Less is more[C]//Proc 9th Int conf

Architectural Support for Programming Languages and
Operating Systems. Cambridge: IEEE Computer Society,
2000: 202-211.

[34] MELSKI D, Interprocedural path profiling and the
interprocedural express-lane transformation[D]. Wisconsin:
University of Wisconsin, 2002.

[35] APIWATTAN APONG T, HARROLD M J. Selective path
profiling[C]// Proc ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering.
New York: ACM Press, 2002, 28(1): 35-42.

[36] BALAS E, ZEMEL E. An algorithm for large zero-one
Knapsack problems[J]. Operations Research, 1980, 28(5):
1130-1154.

[37] GLOVER F. Future paths for integer programming and
links to artificial intelligence[J]. Computers and Operations
Research, 1986, 13(5): 533-549.

[38] GLOVER F, LAGUNA M. Tabu Search[M]. MA, USA:
Kluwer Academic Publishers, 1997:134-142.

[39] ARATO P, MANN Z A, ORBAN A. Algorithmic aspects of
hardware/software partitioning[J]. ACM Transactions on
Design Automation of Electronic Systems, 2005, 10(1):
136-156.

[40] WU Ji-gang, SRIKANTHAN T, CHEN Guang.
Algorithmic aspects of hardware/software partitioning: 1D
Search Algorithms[J]. IEEE Transactions on Computers,
2010, 59(4): 532-544.

[41] ARATO P, JUHASZ S, MANN Z A, et al.
Hardware-software partitioning in embedded system
design[C]//IEEE International Symposium on Intelligent
Signal Processing. USA: IEEE Standards, 2003: 197-202.

编 辑 蒋 晓

	软硬件协同设计复杂问题的计算模型和算法
	叶 华，武继刚0F(
	(天津工业大学计算机科学与软件学院 天津 西青区 300387)

	1 Computing Models and Algorithms
	1.1 Knapsack Model and Algorithm
	1.2 Area-efficient algorithm
	1.3 A New Model and Algorithm with Communications Penalty
	1.4 Power-efficient algorithm
	1.5 Functional Partitioning and Scheduling Algorithms
	1.6 Algorithms for Path-based Hardware/Software Partitioning
	Algorithm Alg_HEA
	1.7 One Dimensional (1D) Search Algorithm

	2 Conclusion

