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Abstract  To detect communities in complex networks, a density set algorithm (DSA) is proposed by 
introducing the concept of density set. The key idea of the algorithm is to constantly construct density sets in a 
network and decide whether the density set founded later can lead to generate a new community or amalgamate it 
with an old one. Step by step, the networks with apparent community structure can be partitioned well by the 
proposed method. The running time of DSA is approximately O(n+m) for a general network and O(n) for a sparse 
network, where n is the number of nodes and m the number of edges in a network. Tests on three typical real world 
networks and a benchmark reveal that DSA produces desired results. So the proposal is reasonable, and has the 
potential for wide applications in physics and computer science. 
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【摘要】通过引入稠密集的概念，该文提出了一种基于稠密集的寻找复杂网络中社团结构的算法。算法的主要思想是在

网络中不断构造稠密集，并判断后生成的稠密集能否导致产生一个新社团，还是将其与一个已有的社团合并。利用该算法可

以将具有明显社团结构的网络进行比较合理的划分。在一般情况下，该算法的时间复杂度约为O(n+m)，对于稀疏网络的时

间复杂度约为O(n)，其中n为网络的节点数，m为边数。对3个典型实际网络和一个标准测试网络的试验结果表明，该方法获

得了理想的社团结构划分。该方法在计算机、物理及其他学科领域具有广泛的应用前景。 
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Networks are used as a foundation for the 
mathematical representation of a variety of complex 
systems in many fields. Among many others, 
prominent ones include biological and social networks, 
Internet, information networks[1-5], and metabolic 
networks. For a complex network, its community 
structure is an important topological characteristic. In 
real-world networks, it is common to have small sets 
of nodes highly connected with each other but with 
only a few connections with the rest of the nodes. It is 
crucial to find the clusters of a network in order to 
understand its internal structure. 

The community structure of complex networks is 
a heavily studied problem in science community. A 
large number of methods have been developed to 
detect community structure in networks in the past 
years. There are mainly two kinds of clustering 
algorithms, one is partitioning algorithm, and the other 
is the hierarchical clustering method. Kernighan-Lin 
algorithm[6]and spectral bisection algorithm[7]are the 
classical representatives, respectively. They can find 
the community structure efficiently in the networks in 
the case that the number of communities in the 
networks is given before. Depending on whether they 
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focus on the addition or removal of edges from the 
network, the hierarchical clustering algorithms can be 
classified in two groups: the agglomerative methods 
and divisive methods. They usually compute the 
intensity of link between each pair nodes based on 
different methods, such as edge betweenness[8-9], edge 
clustering coefficient[10], information centrality[11], 
clustering centrality[12], node similarity[13], and so on. 
Then, by repeatedly incorporating the two nodes with 
the highest intensity of link (agglomerative method), or 
repeatedly removing the edge with the lowest intensity 
(divisive methods), the partition results of the networks 
are obtained. To measure a specific division of a 
network into communities, Ref. [14] introduced the 
modularity Q. Bigger modularity corresponds to a 
better detection of community structures. Ref. [15] 
proposed a quantitative function (modularity density) 
for community partition, and declared that this 
quantitative function is superior to the widely used 
modularity Q. Ref. [16] proposed the concepts of 
accuracy and precision to evaluate the partition result 
of the network. A fast and efficient algorithm that 
searches for the communities in a network was 
depicted by Ref. [17] in 2009. The key strategy is 
mining a node with the closest relations with the 
community and assigning it to this community. The 
local modularity method was proposed by Ref. [18]. 
The utilization of local modularity will generally give 
rise to the increase of the computation speed because 
local information in the network is only related. The 
more methods, techniques and development to extract the 
communities in networks were introduced by Ref. [19]. 

It is a common case that some nodes in a network 
can belong to more than one community, which means 
an overlapping community structure in complex 
networks. In this framework, each node has a certain 
probability of belonging to a certain cluster, instead of 
assigning nodes to specific clusters, which is called 
fuzzy clustering or fuzzy partition in some papers[20-23]. 
For the nodes lying in the transition domain between 
different clusters, the fuzzy partition will be more 
acceptable, which is given more reasonable 
explanations in some cases. 

To describe the definition of community 

quantitatively, Ref. [10] proposed the strong and weak 
definitions. In a strong community, each node has 
more connections within the community than with the 
rest of the network, and in a weak community the sum 
of all degrees within the community is larger than the 
sum of all degrees toward the rest of the network. By 
comparing the above definitions, Ref. [24] proposed a 
comparative definition for community in networks. A 
community is defined as a set of nodes, which satisfies 
the requirement that each node degree inside the 
community should not be smaller than the node degree 
toward any other communities. This definition is in the 
middle of the strong and weak definitions. Hu’s 
definition quantitatively tells us how to tie a node to a 
known set. 

In this paper, an algorithm is proposed to partition 
a network into clusters. The node with a maximal 
degree in a network is found and a density set is 
constructed and labeled. For the rest of the nodes 
(except nodes in the known density set), we search for 
a new density set and determine whether this set leads 
to generate a new community or not. Step by step, all 
nodes in a network will be labeled. This algorithm only 
relates to local information, so its running time is 
significantly reduced. The computational complexity 
of the proposed method is approximately O(m+n) for a 
general network, and O(n) for a sparse network, where 
n is the number of vertices and m is the number of 
edges in the network. The algorithm is tested on a 
benchmark and three real-world networks which are 
widely used in complex networks, and desired results 
are obtained. This implies that the proposed algorithm 
can provide a proper partition. 

1  Density set algorithm (DSA) 
Let G=(V,E) be an undirected and unweighted 

network or graph consisting of the set of nodes 
V(|V|=n), the set of edges E(|E|=m), and a symmetric 
adjacency matrix A, whose elements Aij are equal to 1 
if i points to j and 0 otherwise. In what follows, we 
would like to use simply i instead of vi for indicating 
nodes. The degree of node i is denoted as di, and 
Ai=(Ask) is its neighbor matrix, where node s and node 
k are the neighbors of node i. 
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Up to now, no definition of community has 
universally been accepted. Generally, a community is 
defined as a set of nodes, which satisfies the 
requirement that each node degree inside the 
community should not be smaller than the node degree 
toward any other communities. It is known that 
different networks carry different connection densities. 
Even within the same network, different clusters also 
show different connection densities. To describe the 
compactness of community quantitatively, Ref. [10] 
introduced the following strong community definition. 

Definition of community in a strong sense: the 
subnetwork C is a community in a strong sense if for 
any node i belongs to C, we have  

( )j j

ij ij
v C v V C

A A
∈ ∈ −

>∑ ∑ .             (1) 

Obviously, not all communities in networks are 
strong. However, it is interesting to investigate the 
subset S of V which satisfies Eq. (1) but consists of a 
part of a community we want to extract from a network. 
This is because that the nodes in S are always in the 
same community no matter which algorithm is applied. 
That is to say, the structure of set S is stable in the 
procedure of partitioning networks into groups. We call 
such set S ‘density set’ or ‘strong structure’. 

Now, the question is how to search for density 
sets in a given network and detect communities by 
using these sets. From the sociology point of view and 
enlightening from the example of Karate club, we 
know that the node with a high degree has more 
powerful agglomeration than the one with a low degree 
in a network. This implies that it is possible to 
construct a density set by considering the former and 
its neighbors. 

In what follows, we present the description of 
DSA in detail. 

At the beginning, the node i with a maximal 
degree and its neighbors in V are founded. One can  
easily obtain its neighbor matrix Ai. Let bs= sk

k
A∑ and 

αs = bs/ds. The nodes vs with αs > 0.5 constitute the 
density set D1 and they are labeled accordingly. 

Let V1=V−D1. Repeating the above process, one 
can get the density set D2 in V1. It is necessary to 
decide whether set D2 leads to a new community or it 

is amalgamated with D1. 
To be conveniently, the following notations are 

introduced in order to depict the conditions clearly. 
 
in
iE : the number of edges inside Di. 
 
out
iE : the number of edges which connect Di with 

its neighbors. 
 i
gE : the number of edges connecting Di with its 

neighbors which are in the same known community g. 
 i
uE : the number of edges connecting Di with its 

neighbors which are in the unknown community. 
If Di satisfies one of the following three rules, we 

can conclud that it will give rise to a new community, 
and label all the nodes in this set. 

R1:  
in
iE >  

out
iE . 

R2:  
in
iE <  

out
iE , but  

in
iE >  i

uE and  i
uE >  i

gE for all g. 
R3: Di consists of at least three vertices and its 

neighbors are all in an unknown community. 
It is obvious that a new density set will not always 

satisfy above conditions. In this case, it needs to be 
amalgamated with one of the known communities 
under the conditions, i.e., 

R4:  
in
iE <  

out
iE , but exist g, subject to that Ei 

g  is 
greater than the other Ei 

j  and Ei 
u. If there exist several g, 

one can choose it randomly. 
There also exists a class of density sets which do 

not satisfy all above conditions. But they meet 
R5:  

in
iE <  

out
iE ,  

in
iE <  i

fE , and  i
fE >  i

gE  for all g. 

In this case, we do not know how to further 
operate this density set. Therefore, the best idea is to 
label it as an undetermined set. 

All communities will be founded after all the 
nodes in a network have been labeled and there is no 
undetermined density set. If existed, we execute the 
following procedure A: 

Step 1: Search for the node j with a maximal 
degree in all undetermined sets. 

Step 2: Recalculate its density set and values  
in
iE  

and  i
gE s.  

Step 3: If there exists a community g, s.t.  
in
iE < 

 i
gE , then amalgamate this set with the community g. 

Otherwise label this density set. 
Step 4: Repeat steps 1～3, until there is no 

undetermined set or node. 
When this procedure is over, it is obvious that all 
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communities in the network have been obtained. The 
whole algorithm is described as follows. 

Input: A complex network G = (V, E). 
Output: Community structure of network. 
Step Ⅰ: Search for the node i with a maximal 

degree and its neighbors in set V. Compute bs and αs, 
and construct density set Di. Label the nodes in Di 
according to rules R1, R2,  , R5. 

Step Ⅱ: Let V=V−Di, while V≠ null, go to step 1. 
Step Ⅲ: If there exists an undetermined set  

call Procedure A  
else output communities. 

The main time consumption of the proposed 
algorithm is in the process of constructing the density 
set, which involves the following two steps. The first is 
to find the neighbors of node i. It is easy to obtain them 
in O(di), where di is the degree of node i. The second is 
to construct the density set Di and decide whether or 
not this density set leads to a new community. The 
required time for this step is at most O(di+3mi), where 
mi is the number of edges in Di. The running time of 
extracting the density set Di is about O(2di+3mi), or 
simply O(di +mi). Therefore, the running time of step 
Ⅰ in the algorithm is approximately O(n + m). In 
general, the running time of procedure A does not 
overrun O(n+m). The complexity of the proposed 
method is linear because the algorithm always employs 
the local information about a given vertex and its 
neighbors, but not the global information about the 
whole network. 

2  Application of DSA 
In this section, to confirm the performance of the 

proposed algorithm, three classical real-world 
networks with a known community structure and a 
benchmark are chosen. Java language and Eclipse RCP 
IDE are used to implement the algorithm on PC with 
2.66 GHz duo processor and 2 GB memory. 
2.1  College football network 

The first example is the network of the schedule 
of Division I games for the world of US college 
football 2000 season[22]. In this network, vertices 
represent teams and edges represent regular season 
games between the two teams they connect. One has 

already known in advance that there are 12 
communities in this network and each community 
contains around 8 to 12 teams. The characteristic this 
network carries is that the degrees of its nodes vary 
from 7 to 12 and the average degree is about 10.6. That 
is, there is no apparent center node like nodes 1, 33 or 
34 in Zachary’s karate club network[25]. 

For this network, steps Ⅰ  and Ⅱ  in the 
proposed algorithm are executed 44 times and initially 
25 density sets are obtained. Then the Procedure A is 
called 20 times and as a result, 11 communities are 
detected with 5 communities coinciding with the real 
groups. Total of 91.3% of teams are put in correct 
communities. The whole correct result is not obtained 
because some teams play with the teams in their own 
community nearly as much as with the teams in other 
communities. The algorithm can not find the teams like 
node 110 which has more connections with other 
communities than with the vertices in its own 
community. The partition result can be seen in Fig.1 
and comparison results are listed in Tab.1. 

Table 1  Comparison of the result of our algorithm OM 
with other well-known algorithms which are, in order, GN[9], 

FCM[22] and LP[26]. 
Algorithm Community Complexity Modularity Q Accuracy/ (%) 

GN 
FCM 
LP 
OM 

11 
10 
11 
11 

O(n3) 
O((m+nK)K) 

O(n3) 
O(m + n) 

0.601 0 
0.467 3 
0.604 6 
0.600 8 

78 
90 
87 
91 

2.2  Les Misérables network 
Les Misérables network complied by Ref.[27] 

reflects the interactions between major characters in 
the novel Les Misérables written by Victor Hugo. For 
this network, the vertices represent characters and an 
edge between two vertices represents simultaneous 
appearance of both characters in one or more scenes. 
Fig.2 shows the community structures detected by the 
proposed method. Four communities reflect clearly the 
subplot structure of the book: Jean Valjean (node 11) 
and the police officer Javert (node 27) are center of the 
largest communities representing the protagonists in 
the novel. Marius (node 55) and Gavroche (node 48) 
are the key characters in another community. Fantine 
(node 23) and bishop Myriel (node 0) lead the rest two 
communities respectively. 
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Fig. 1  The community structure of USA College Football network detected by the proposed algorithm 

 
Fig.2  Community structure for the Les Misérables network 

2.3  Books on American politics network 
The final example is V.Krebs’ network of books 

on American politics introduced by Ref. [28]. In this 
network the vertices represented 105 recent books on 

American politics bought from the on-line bookseller 
Amazon.com, and edges join pairs of books that are 
frequently purchased by the same buyer. Ref. [28] 
divided the books into 3 types: liberal, conservative or 
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centrist with no clear affiliation. Fig. 3 shows the result 
achieved by the proposed algorithm. The community in 
the left represents the liberal books, the right one 
represents almost entirely the conservative books, and 
the middle group denotes the centrist. In the result, left 
group includes 3 centrist books and 2 right wing books 
besides liberal books. The right one has more centrist 

books than the left but no liberal books. The middle 
one consists of 4 centrist books, 5 liberal books and 2 
conservative books. These books in different 
communities are almost identical with the actual 
division according to political orientations. Rectangles 
represent books and edges join books frequently 
purchased by the same readers. 

 
Fig.3  The partitioning of the American Political Books network found by the proposed algorithm. 

3  The comparison of the results 
In this section, we have used a benchmark to test 

the performance of our algorithm and the other three 
famous algorithms to detect communities in networks, 
i.e., extremal optimization algorithm[29], GN fast 
algorithm[14], spectral optimization algorithm[29]. The 
benchmark introduced by Ref. [30] is an artificial 
network of which both the degree and the community 
size distributions are power laws, with exponents 
α(α=2,3) and β(β=1,2), respectively. The parameters 
we take in this benchmark are α=2, β=2, number of 
nodes=500, average degree=15, max degree=50, 
minimum for the community sizes=20 and maximum 
for the community sizes=50, respectively. 

From Fig. 4, it is easy to see that our algorithm 
runs fastest in the four algorithms. This result confirms 
our analysis of time complexity. When pout≤0.4, it 
shows that the accuracy of division of this benchmark 
obtained by our algorithm is higher than those 
achieved by the other three algorithms in Fig. 5a This 
implies that the network with an apparent community 
structure can gain a good partition by the proposed 
algorithm. The curves in Fig.5b show that the number 
of communities found by the proposal is always close 
to the original one. Maybe, the result can be thought as 
an indicator when we deal with the clustering problems 
(for example C-means algorithm).  

The curves correspond to time complexity of our 
algorithm and spectral optimization algorithm 
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respectively in right side since they are too close to be 
distinguished in left side. 

 
a. time complexity 

 
b. computer time 

Fig. 4  The comparison of the time complexity of four 
algorithms and the scaling of the computer time (in ms) with Pout 

 
a. accuracy 

 
b. numbers of community 

Fig. 5  The scaling of the accuracy of division of the benchmark 

computed by four algorithms with Pout, and the variety of the 

numbers of community detected by different algorithms in the 

benchmark with Pout. 

4  Discussion and conclusion 
Since the structure of the density set is stable in 

the procedure of partitioning a network into groups, it 
is possible to obtain the community structure of a 
network by searching for density sets in this network. 
Obviously, not all the density sets can lead to a new 
community. Thus, it is necessary to introduce some 
conditions to decide whether the density set 
constructed later can generate a new community. The 
process of constructing density sets only relates to 
local information, i.e., a node and its neighbors. Unlike 
the existed agglomeration algorithms, we tie all the 
batch nodes to a known set simultaneously. These 
imply that our algorithm can fast detect communities 
in a network. 

In summary, we develop an algorithm to extract 
community structures from the networks. It runs in 
time O(m+n) for a general network, and O(n) for a 
sparse network, where n is the number of vertices and 
m the number of edges in the network. This is 
considerably faster than most previously reported 
algorithms, and allows the extend community structure 
analysis for the networks that were considered too 
large to be tractable in the past. The proposed 
algorithm is tested on a benchmark and three networks 
with known community structures, and the results 
indicate competitive performance. The method is 
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expected not only to allow the extension of community 
structure analysis to some of the very large networks, 
but also prove useful in the analysis of many other 
types of networks. 
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