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Abstract  An approximate expression of bit error rate (BER) is derived for a circular cell distributed antenna 

system with space-time block coding based on Alamouti’s scheme and utilizing binary phase shift keying (BPSK) 
modulation. The analysis is carried out on considering the effects of path loss, log-normal shadowing, multipath 
fading and background noise. A simulation is carried out under the condition of two transmit and one received 
antennas, single-path Rayleigh fading channels, antenna spacing of 200 m, and standard deviation of shadowing of 
8 dB. The simulation results show that, the numerical results match the simulation results well, and at the BER of 
3×10−1, the proposed method is superior by about 1.4 dB to the traditional methods in bit signal-to-noise ratio. 
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【摘要】在分布式发射天线系统中，针对圆形小区下基于Alamouti空时分组编码和采用BPSK调制的情况，推导了误比特

性能的近似解析表达式。理论推导过程考虑了路径损耗、阴影衰落、单径瑞利衰落和背景噪声的影响。在2发1收、单径瑞利

衰落信道、200 m发射天线间距以及8 dB阴影标准差的条件下进行仿真，结果表明，所提方法的数值分析结果和计算机仿真结

果是相吻合的，且在比特误码率为3×10−1时，与传统方法相比，该文方法在性能上有约1.4 dB的比特信噪比增益。 
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Apart from the in-depth research on co-located 
antenna systems (CAS), distributed antenna systems 
(DAS) have been attracting worldwide interest and are 
expected to be one of the promising techniques in the 
next generation wireless communication systems[1-3]. 
Space-time block coding (STBC), which was first 
proposed by Alamouti[4] for systems with two transmit 
antennas, is a superb candidate for next-generation 
wireless systems. 

However, there is little information on the 
analysis of exact or approximate expressions of bit 
error rate (BER) for space-time block coding with 
distributed transmit antennas.  

In Ref. [5], a tight closed-form upper bound was 
presented for the BER of space-time block coding in 
Rician and log-normal fading channel, respectively. An 
expression of BER over small-scale fading and 
large-scale fading was given in Ref. [2], but it was an 
approximate expression in high signal-to-noise ratio 
(SNR) region. 

This letter derives an approximate BER for 
arbitrary SNR for DAS with space-time block coded 
based on Alamouti’s scheme and utilizes binary phase 
shift keying (BPSK) modulation over composite 
exponential/log-normal fading. 
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1  System Model 
1.1  Transmitter 

For DAS, two transmit antennas connected to a 
single base station by fiber optic or coaxial cables are 
located at different places of a cell. For practical reason, 
the mobile station (MS) is assumed to have a single 
antenna. The separation distance between the antennas 
is denoted by D ( λ>> , where λ  is the wavelength). 
The separation distance between the MS and the kth 
transmit antenna (TXk) is denoted by dk (k=1,2). We 
assume a system with ideal synchronization. We also 
assume a noise-limited environment. This assumption 
holds for an isolated cell or a multicell system with 
large frequency reuse distance where the interference 
is small compared with the thermal noise[6]. 
1.2  Receiver 

The output of the STBC decoder can be given by 
Ref. [4]: 

/ 2tR P X W= +h          (1) 

where tP  is the total transmitted power at the base 
station, h is a channel vector of size 2 1× , h  is 
Euclidean norm of h, X  represents the transmitted 
symbol, and W  is additive complex Gaussian noise 
with zero mean and variance 0N . The coefficient 

/ 2tP  ensures that the total transmitted power is tP . 
In DAS, the transmit antennas are spaced by large 

distance. Hence, the channel model involves not only 
small-scale fading but also large-scale fading. 
Therefore, the channel vector can be expressed as: 

T
1 1 2 2[ , ]h S h S=h           (2) 

where hk represents composite multipath/shadowing 
fading, and Sk is a factor that captures the effects of 
path loss for the TXk-MS link (k=1,2). 

We model hk as a complex composite exponential/ 
log-normal random variable. The composite 
exponential/log-normal probability density function 
(PDF) of SNR kγ  can be presented as[7]: 
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where kΩ  is the average received power, 

10 / ln10x = , (dB) 10lgk kµ γ=  and (dB)kσ  are the 
mean and standard deviation of 10lg kΩ , respectively, 
and kγ  is the average SNR per bit. 

We model kS  as follows[8]: 
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where λ  is the wavelength, bh  is the transmit 
antenna height, sh  is the MS antenna height, and 

4 /b sh hϒ λ= p  denotes the break point. 

2  BER Analysis 
According to the described channel model, the 

instantaneous power received from TXk can be 
expressed as: 

21
2

r t
k k kP P h S=              (5) 

Then, the total received power is 
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the assumption of BPSK modulation, the BER, 
conditioned on the mean SNR 1 1 0/ 2tP S Nγ = and 

2 2 0/ 2tP S Nγ = , can be expressed as: 
  

1 2 1 2 1 2 1 2 0  0
( , ) ( 2 ) ( , | , )d deP Q fγ γ γ γ γ γ γ γ γ
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where ( )Q ⋅  is the Gaussian probability function[9], 
2

1
k

k
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=

= ∑  is the total instantaneously received SNR, 

0/r
k kP Nγ =  represents the instantaneous SNR 

received from TXk, and 1 2 1 2( , | , )f γ γ γ γ  is the joint 
conditional PDF of 1γ  and 2γ . According to the 
given channel model, 1γ  and 2γ , conditioned on 1γ  
and 2γ , are independent and identically distributed 
composite exponential/log-normal random variables. 
Hence, 

1 21 2 1 2 1 1 2 2( , | , ) ( ) ( | )f P Pγ γγ γ γ γ γ γ γ γ=     (7) 

where ( | )
k k kPγ γ γ  is the conditional PDF of kγ  in 

Eq. (3). Using Craig’s formula for the Gaussian 
Q-function[9], ( 2 )Q γ  can be expressed as: 
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where θ  is an integral parameter. Then, it follows 
from Eq. (6) that: 
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After exchanging the integral order of θ  and kγ  in 
Eq. (9), we have: 

}

2 / 2  

1 2 2 0  0
1

1( , ) exp
sin

( | ) d d
k

k
e

k

k k k

P

Pγ

γ
γ γ

θ

γ γ γ θ

p ∞

=

   = − ×   p   



∏∫ ∫
    

(10)
 

Based on the moment generating function (MGF) of 
composite exponential/log-normal PDF[7], we have: 

2

 

2 0

1
 ( 2 ) /10

2 

exp ( | )  d
sin

1 11 10 e d
sin

k

k k

k
k k k

x x

P

x

γ

σ µ

γ
γ γ γ

θ

θ

∞

−
∞ + −

−∞

  − =  
  

 + p  

∫

∫
   

(11)

 

It can be easily derived that: 
( 2 ) /10 2 /1010 10k k kx x

k
σ µ σγ+ = ×          (12) 

Substituting Eq. (11) and Eq. (12) into Eq. (10) 
yields: 
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The inner integral can be computed efficiently using a 
Gauss-Hermite quadrature integration[7,10], that is: 
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where ( 1,2, , )ix i n=   are the zeros of the n-order 
Hermite polynomial ( )nHe x  and ( 1,2, , )iw i n=  are 
weight factors tabulated in Table 25.10 of Ref. [10] for 
values of n from 2 to 20. To get numerical results in 
section IV, of Ref. [10] we can choose n=20 to 
compute BER as the approximate results. Then, we 
have: 
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If 1 2γ γ≠ , we spread the product of two 
polynomials in Eq. (15) as follows: 
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where 1 2c c≠ , and ψ  is a function of c, 

i.e. ( ) 1
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+
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k kc σγ=  
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If 1 2γ γ= , we spread the product of two 
polynomials in Eq. (15) as follows: 
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According to Ref. [7], we have: 
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Hence, 1 2( , )eP γ γ  can be expressed as: 
2

1 2 1
1

( ) ( ) ( ) ( )
1 1 1 1

( ) ( )
1 1

1( , ) ( )
2

( ) ( )

n
i

e i
i

j j i in

i j j i
i j

P w c

c c c cw w
c c

γ γ ϕ

ψ ψ
=

≠


= +

p 
−


− 

∑

∑
      

(23)

 



                                           电 子 科 技 大 学 学 报                                 第 40 卷   670 

3  Numerical and Simulation Results 
Numerical results are provided to demonstrate the 

analysis developed in this letter and to compare it with 
simulation results. The approximate results are also 
compared with the ones obtained by Ref. [2]. The basic 
simulation parameters are tabulated in Table 1 as 
follows. 

Table 1  Simulation parameters 

parameter vitem value 

Total transmit power tP /mW 50 

Transmit antenna height bh /m 5 

MS antenna height sh /m 1.5 

Wavelength λ /m 0.3 

Radius of Cell R/m 250 

Antenna Spacing D/m 200 

Channel Bandwidth B/MHz 20 

 

The total SNR is 
2 2

0
1 1

/r
k k

i i
P Nγ γ

= =

= =∑ ∑  and 

noise power of receiver 0N [8] is 174 dBm+10lgB− . 
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Fig. 1  BER performance of distributed Alamouti STBC versus 

MS location with 8 dBkσ =  along a line through the center of 

circular cell and TXk 

Fig. 1 shows the BER performance of distributed 
Alamouti STBC versus MS location with 8 dBkσ =  
along a line through the center of circular cell and TXk, 
where the transmit power of each transmit antenna is 
25 mW. Curves are obtained both by analysis and 
simulation. From Fig. 1 we can observe that, 
theoretical analysis and simulation results match well 
for MS along the line. Furthermore, it can be obtained 
that the closer the distance between MS and transmit 

antenna, the better the BER performance. 
Fig. 2 shows the BER performance of distributed 

Alamouti STBC versus the SNR at 1 100 md =  and 

2 110 md = , with kσ = 4 dB and 8 dB, respectively. 
Curves are obtained both by analysis and simulation. It 
can be seen that analysis results agree well with 
theoretical ones. Compared with the approximate BER 
under high SNR condition in Ref. [2], the presented 
analysis is more accurate for arbitrary SNR. 
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Fig. 2  BER performance of distributed Alamouti STBC with 

BPSK modulation versus SNR 

4  Conclusions 
This paper analyzed the BER performance for 

STBC with distributed transmit antennas, where 
Alamouti’s scheme was employed. For BPSK 
modulation, an efficiently approximate expression of 
BER was derived. Comparison of analytical and 
simulation results validated the presented expression. 
For further work, we will generalize the BER analysis 
to higher order modulations such as the MPSK, 
MQAM or consider the scenario where there are some 
spatial correlations between two transmission 
channels. 
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