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Abstract  An overview of advanced neural network methods for modeling radio-frequency (RF) and 

microwave electronic devices is presented. Knowledge-based engineering concept is utilized where the knowledge 
of RF/microwave electronics in the form of equivalent circuits and empirical formulas is combined with neural 
networks. Advantages of adding knowledge on the performance of the neural models in terms of generalization 
ability versus different sizes of training data through a knowledge based neural network (KBNN) technique are 
demonstrated and examples of comparisons with conventional MLP (without any knowledge-base) are given. 
Several methods of combining existing circuit models with neural networks, including the source difference 
method, the prior knowledge input method, and the space-mapped neural models, are also introduced. Application 
examples on modeling microwave transmission line and high electron mobility transistor (HEMT) device 
demonstrate that KBNN is an efficient approach for modeling various types of microwave devices. 
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【摘要】综述了用神经网络对射频与微波电子器件建模的方法，利用知识型的概念将射频或微波电子的等效电路和经验

公式与神经网络有机的结合起来。将相关知识附加到神经网络模型的优势进行了论证.通过与无附加知识的传统多层感知器对

比，证明了知识型神经网络的可行性。介绍了几种现有电路模型与神经网络结合的方法，如差分法、先于知识输入法及空间

映射神经网络法。举例介绍了微波传输线和高电子迁移率晶体管的建模方法及过程，证明了基于知识的神经网络是各种微波

器件建模的一种有效方法。 
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The application of artificial neural networks 
(ANN) to radio-frequency (RF) and microwave 
modeling has been recognized as a powerful 
alternative to conventional electromagnetic (EM)– 
based modeling techniques for computer-aided design 
of RF/microwave circuits in wireless electronics 
systems. Neural networks are trained to learn the 

highly complicated behavior of RF/microwave 
components, and the trained neural networks can 
provide quick solutions to the problem it learned.  
Such neural network based model is much faster for 
RF/microwave design compared to conventional 
electromagnetic based design[1-5].   

With continuing developments in applications of 
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neural networks to RF/microwave design, there is a 
growing need for reduction in the cost of model 
development and improvement in model reliability. 
The accuracy of the commonly used multilayer 
perceptron (MLP) model largely depends on adequacy 
of the training data, apart from the number of hidden 
neurons. Since MLP belongs to the type of black-box 
models structurally embedding no problem-dependent 
information/knowledge, it derives the entire 
information about the RF/microwave behavior from 
the training data. Consequently, a large amount of 
training data is usually needed to ensure model 
accuracy. In microwave applications, training data is 
obtained either by simulation of original 
EM/device-physics problem, or by measurements. 
Generating large amount of training data could be very 
expensive, because simulation/measurement may have 
to be performed at many points in the model input 
parameter space (e.g., for various combinations of 
geometrical/process/bias parameters). Without 
sufficient training data, the resulting neural models 
may not be reliable. Moreover, even with sufficient 
training data, the reliability of MLP when used for 
extrapolation purpose is not guaranteed and in many 
cases is very poor. 

This paper describes advanced methods in the 
microwave neural network modeling area where 
existing RF/microwave knowledge is combined with 
neural networks. Such knowledge provides additional 
information of the original problem that may not be 
adequately represented by limited training data. Instead 
of using a pure neural network to represent a 
microwave behavior, existing empirical models are 
used to improve generalization capability of neural 
models. At the same time, neural networks can help to 
bridge the gap between empirical models and EM 
solutions. 

1  Engineering Knowledges for RF/  
Microwave Modeling 
In RF/microwave modeling area, the knowledge 

about the RF and microwave problems is often in the 
form of empirical or equivalent circuit models. In 
addition, the fundamental laws govern the 

RF/microwave device behaviour, such as Maxwell’s 
equations, Kirchoff’s equations, and so forth can also 
be used to describe the component behavior. Detailed 
models based on EM/physics equations are accurate.  
However, they can be computationally intensive. 
Simple empirical and equivalent models often exist for 
passive and active RF/microwave components, but 
such models may not be as accurate as desired. 
Furthermore, a single model may not be adequate 
enough to represent the component behavior in the 
entire input space. Exploiting the learning ability of 
neural networks, we use neural networks to overcome 
the accuracy deficiencies in existing 
empirical/equivalent models. By adding the 
empirical/equivalent circuit into neural network 
structures, we can reduce need for large amount of 
training data and improve model reliability. The 
resulting knowledge based models would have the 
speed of empirical or neural models, and the accuracy 
of EM/physics models. 

2  Knowledge-Based Neural Networks 
for RF/Microwave Modeling 
To improve neural network accuracy/ 

generalization capability, several attractive ways have 
been proposed, where neural networks can be 
combined with empirical/equivalent models, such as 
the difference method (DM), the prior knowledge input 
method (PKI), the knowledge based neural network 
method (KBNN), and space mapping neural modeling 
(SM). These and other advanced structures are 
described here. 
2.1  Knowledge Based Neural Network (KBNN)  

An advanced structure combining microwave 
knowledge and neural network is the KBNN method, 
first proposed in Ref. [6] and further described in Ref. [4]. 
In this method, microwave knowledge in the form of 
empirical functions or analytical approximations is 
embedded into the neural network internal structure. 
Such knowledge complements the capability of 
learning and generalization of neural networks by 
providing additional information which may not be 
adequately represented in a limited set of training data. 
The combined model can learn and predict component 
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behaviors originally seen in detailed physics/EM 
models, and predict such behaviors much faster than 
original models.  

Switching boundary and region neurons are 
introduced in the model structure to reflect 
RF/microwave designs, where different equations or 
formulas with different parameters can be 
interchangeably used in different regions of the input 
parameter space. By inserting the microwave empirical 
formulas into the neural network structure (neuron 
activation functions), the empirical formulas can be 
refined/adjusted as part of the overall neural network 
training process. This technique enhances neural model 
accuracy especially for the data not seen during 
training (generalization capability), and reduces the 
need for a large amount of training data over 
conventional neural models for RF/microwave design. 
During the training process, shift and scale parameters 
of the empirical functions, other parameters in the 
empirical functions, boundary locations (defined by 
boundary neurons), and shape of regions for the 
empirical functions (defined by region neurons), are all 
automatically adjusted such that the training error 
between KBNN model output and that of the training 
data is minimized. 

The final model provides the overall input-output 
relationship through knowledge formulas and other 
layers in the network. This model can be used together 
with the existing models in a circuit simulator. An 
example of such implementation is NeuroADS[7], 
which plugs neural network models, such as KBNN, 
into the ADS[8] simulator. 

The motivation for developing the KBNN 
structure was from the fact that practical empirical 
functions are usually valid only in a certain region of 
the parameter space. To build a neural model for the 
entire space, several empirical formulas and a 
mechanism to switch among them are needed. The 
KBNN model retains the essence of neural networks in 
the sense that the exact location of each switching 
boundary, and the scale and position of each 
knowledge function, are initialized randomly and then 
refined automatically by the training process. The 
KBNN structure does not follow the rigorous 

layer-by-layer structure in MLP. Due to the use of such 
an advanced structure, the conventional 
backpropagation training is not applicable, thus a 
training algorithm specifically developed for this 
structure was introduced in Ref. [6]. Besides, this 
KBNN technique enhances neural model accuracy 
especially for unseen data and reduces the need of 
large set of training data. It has a significant impact on 
statistical analysis and design of RF/microwave 
circuits. 
2.2  The Difference Method 

One of the earlier methods in the direction of 
knowledge based neural network is the source 
difference method[4,9]. The idea is to exploit the 
existing information in the form of empirical or 
equivalent circuit models together with the neural 
models to develop fast and accurate hybrid EM-ANN 
models. In other words, one can use the known 
information of the component to simplify the 
input-output relationship to be modeled by a neural 
network. The microwave behaviors of the component 
(e.g., S-parameters) are generated using EM simulation 
in the region of interest (i.e., model utilization range in 
input space). The behaviors of the component are also 
computed from the existing approximate model. A fast 
neural model is then developed to learn the difference 
between the EM simulation results and the 
approximate model. Because both the empirical and 
the neural models are fast, the final combined model is 
also fast. The overall structure consists of an empirical 
or equivalent circuit model (approximate model) to 
represent the available knowledge, and a neural 
network that represents the difference between EM 
simulation data and approximate model[10], is shown in 
Fig. 1. 

The training data for the ANN portion of the 
overall model is obtained by calculating the difference 
between the EM data and the corresponding solutions 
from the approximate model.  The finished model for 
the user has two components, that is, the empirical 
model and the trained neural model. This hybrid 
EM-ANN model will be used during online microwave 
design. The empirical model computes the 
approximate outputs, and the trained neural model 



                                           电 子 科 技 大 学 学 报                                 第 40 卷   818 

predicts the difference. In this way, the neural model 
can help to correct for the differences in the outputs. 
The EM-ANN model offers the accuracy of EM 
simulation but at a speed much faster than EM 
simulation. Using the source difference method, fast 
and accurate microwave component models can be 
developed with less training data. The time required 
for model development is also shorter.  The difference 
method is also the simplest knowledge based neural 
network methods. 
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Fig. 1  Scheme of the difference method 
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Fig. 2  Scheme of the PKI method 

2.3  Prior Knowledge Input Method (PKI) 
An interesting knowledge based approach is the 

prior knowledge input method proposed in Ref. [10]. 

Prior knowledge, for example, can be in the form of 
analytical equations, empirical models, or already 
trained ANN models. Normally, the existing empirical 
models or analytical equations do not give the required 
accuracy over the desired range of operation. In the 
PKI method, the empirical model outputs are used as 
inputs to the neural network model, in addition to the 
original problem inputs. In this case, the input-output 
mapping to be learned by the neural network is that 
between the outputs of the existing approximate model 
and the original problem. For the case where the target 
outputs are the same as the approximate model outputs, 
the learning problem is reduced to a one-to-one 
mapping. The overall structure consists of an empirical 
or equivalent circuit model (approximate model) to 
represent the available knowledge. It also has a neural 
network that represents the mapping between the 
outputs of the approximate model and the original 
problem[10], as shown in Fig. 2. The quality of this 
mapping is enhanced by including the original problem 
inputs as additional inputs to the neural network. The 
PKI is also called the additional input method. 

The model development process includes a data 
preprocessing phase and a neural network training 
phase. In the data preprocessing phase, the EM training 
data is fed to the approximate model, whose output 
will be used as input data for ANN training. The other 
part of the inputs to the ANN is the original input of 
the overall hybrid model. The output of the ANN is in 
the original EM data. In the second phase, the ANN 
model can be trained with the preprocessed data. 

By combining the trained neural model with the 
empirical model during the online microwave design, 
we obtain the overall PKI model. The evaluation of the 
neural network starts from the outputs of the 
approximate model and results of the evaluation will 
be the overall model responses, matching the accuracy 
of EM simulation. The PKI model is faster than direct 
EM simulation models, and is more accurate than the 
original empirical model. 
2.4  Space-Mapped Neural Modeling 

While the PKI method uses ANN to modify the 
outputs of the empirical model, there is another method 
where ANN is used to modify the input of the 
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empirical model. The method, called the space-mapped 
neural network approach, was proposed in Ref. [11-12]. 
The space-mapping (SM) technique [13] combines the 
computational efficiency of coarse models with the 
accuracy of fine models. The coarse models are 
typically empirical functions or equivalent circuit 
models, which are computationally very efficient. 
However, such models are often valid only in a limited 
range of input-space, beyond which the model 
predictions become inaccurate. On the other hand, 
detailed or “fine” models can be provided by an 
electromagnetic (EM) simulator, or even by direct 
measurements. The detailed models are very accurate 
but can be expensive (e.g., CPU-intensive simulations). 
The SM technique establishes a mathematical link 
between the coarse and the fine models, and directs the 
bulk of the CPU-intensive computations to the coarse 
model, while preserving the accuracy offered by the 
fine model. The neural network module maps the 
original problem input-space xf (i.e., fine model 
input-space) into a coarse model input-space xc. The 
coarse model then produces the overall output y, which 
should match the EM data (i.e., fine model output).  

The specific process is as follows: First, let the 
vectors cx  and fx  represent the design parameters 
of the input-space in coarse and fine models, 
respectively, and ( )c cR x  and ( )f fR x  are the 
corresponding model responses. The aim of SM is to 
find an appropriate mapping P  from the fine model 
parameter input-space fx  to the coarse model 

parameter input-space cx . 

( )c fP=x x                 (1) 
such that:  

( ( )) ( )c f f fP ≈R x R x              (2) 
Once the mapping is found, the coarse model can 

be used for fast and accurate simulations. 
The illustration of the space-mapping neural 

modeling concept is shown in Fig. 3. 
For EM modelling, there are many available 

empirical models based on quasistatic analysis: they 
usually yield good accuracy over a limited low range 
of frequencies. This limitation is overcome through a 
frequency-sensitive mapping from the fine to the 
coarse parameter space. This is realized by considering 

frequency as an extra input variable of the ANN that 
implements the mapping. 
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Fig. 3  Scheme of the space-mapped neural modeling 

Frequency dependent space-mapped neural 
modeling (FDSMN) and frequency space-mapped 
neural modeling (FSMN) are two common forms of 
SM neural modeling. 

In the FDSMN approach, both coarse and fine 
models are simulated at the same frequency, but the 
mapping from the coarse to the fine parameter 
input-space is dependent on the frequency[11], as 
illustrated in Fig. 4. 
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Fig. 4  Scheme of the frequency dependent  

    space-mapped neural modeling 
With a more comprehensive domain, the FSMN 

technique establishes a mapping not only for the 
design parameters but also for the frequency variable, 
such that the coarse model is simulated at a mapped 
frequency f, to match the fine model response [11]. This 
is realized by adding an extra output to the ANN that 
implements the mapping, as shown in Fig. 5. 

To train the space mapped neural model, we either 
initialize the ANN part as an unit mapping, or use 
parameter extraction of the coarse model to provide the 
intermediate training data for ANN. The final training 
can be a combined optimization of the hybrid ANN 
and the coarse model to match original EM training 
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data. After training is finished, the model available for 
users is the hybrid of ANN and coarse model where 
coarse model inputs are the ANN outputs. The space 
mapped neural model retains the speed of coarse and 
ANN models, and the model accuracy is near that of 
the fine EM model. 
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Fig. 5  Scheme of the frequency space-mapped  

neural modeling 
The combined neural network and space mapping 

approach has been further extended into nonlinear 
active device modeling area. An interesting approach is 
the Neuro-space mapping (Neuro-SM) technique, 
which is a systematic computational method to address 
the situation where an existing device model cannot fit 
new device data well. In other words, it uses neural 
networks to map the coarse model to hte fine model. 
By modifying the current and voltage relationships in 
the model, Neuro-SM produces a new model 
exceeding the accuracy limit of the existing model. 
The method has been applied to large signal transistor 
device modeling. The use of such developed 
Neuro-SM models in harmonic balance based circuit 
simulations have demonstrated that the Neuro-SM is 
an efficient approach for modelling various types of 
microwave devices. It is useful for systematic and 
automated update of nonlinear device model library for 
existing circuit simulators. 
2.5  Other Advances of Knowledge-Based Neural  

Network Methods for RF/Microwave Modeling  
Over the recent years, there have been many 

advances in the application of neural networks 
combined with RF/microwave knowledge for 
modeling and design of RF microwave circuits and 
systems. One of the important advance is the 
neuro-space mapping method applied to active device 
modeling[14-15] and to statistical modeling of large- 
signal devices[16], which helps to predict statistical 

behavior of devices subject to manufacturing 
tolerances and process variations. Another interesting 
development is the combination of neural network 
methods and computational electromagnetics for fast 
simulation and design of electromagnetic 
structures[17-18]. An interesting use of neural network is 
inverse modeling[19], where neural network is used to 
reversely find the physical geometrical parameters of a 
device from given electrical specifications. 
Combination of ANN and efficient global optimization 
techniques [20] and recurrent neural network methods [21] 
have been applied to microwave passive and active 
device and circuit modeling. The utilization of transfer 
function as knowledge to represent frequency domain 
circuit behavior is combined with neural networks for 
passive microwave component modeling [22]. High- 
dimensional neural network method combining 
microwave filter decomposition with modular neural 
networks enabled the neural network method to model 
microwave filters with 11 design variables[23]. 

3  Example of Knowledge-Based  
Neural Networks 

3.1  Microwave Transmission Line Modeling 
This example, based on Ref. [6], demonstrates the 

knowledge based neural networks in modeling 
microwave transmission lines for analysis of high 
speed VLSI interconnects. Electromagnetic (EM) 
simulation of transmission lines is extremely slow 
especially when it needs to be repeatedly evaluated. 
The speed of neural networks learning from EM data 
has been found much faster than the original EM 
simulation. The transmission line and its model 
inputs/outputs are shown in Fig. 6. In this example, 
MLP and KBNN were used to model the cross 
sectional per unit length mutual inductance, l12, 
between two conductors of a transmission line. The 
inputs to the model are width of conductor (W, or x1), 
thickness of conductor (T, or x2), separation between 
two conductors (S, or x3), height of substrate (H, or x4), 
relative dielectric constant (ε, or x5), and frequency (f, 
or x6). There are empirical formulas for mutual 
inductance, for example: 
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This equation becomes the knowledge to be 
incorporated into the knowledge layer neurons. 

 W S 

L 

T 

ε 
H 

  

 

 
Knowledge-based  

Neural Model 

W  T  S  H  ε   f 

l12 

 
 a. The microwave transmission line        b. its model inputs and outputs 

Fig. 6  The microwave transmission line and its model 

The structure of the knowledge based neural 
network is shown in Fig. 7. There are six layers in the 
structure [6], namely input layer X , knowledge layer Z , 
boundary layer B , region layer R , normalized region 
layer R′ , and output layer Y . The input layer X  
accepts parameters x  from the outside model. The 
final output layer provides the solutions of the circuit 
or device responses. Here we describes an KBNN 
example based on Ref. [6]. 
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Fig. 7  Structure of knowledge based neural  

  networks for RF microwave modeling 

Two KBNNs of size (b2z3 and b4z6) were trained 
and compared with three MLPs (6-7-1, 6-15-1 and 
6-20-1).  The size of KBNN is described by the 
number of boundary and knowledge neurons (e.g., 
b2z3 means 2 boundary and 3 knowledge neurons[6]). 
The size of MLP is described by the number of input, 
hidden and output neurons, e.g., 6-7-1 means 6 inputs, 
7 hidden and 1 output neurons, respectively.  

Five sets of data were generated by EM 
simulation. The first three sets with 100, 300 and 500 
samples were generated and used for training. A set 
500 samples never used in training are used as test data. 

Fig. 8 compares the accuracy of the KBNN versus that 
of the MLP. The curves in Fig.8 are from models of 
various sizes and trainings with different initial 
weights. The advantage of KBNN over MLP is more 
significant when less training data is available. A 
significantly superior performance of KBNN showed 
up in the case of a smaller training data set, e.g., 100 
samples. Furthermore, the overall tendency suggests 
that KBNN trained by a small training data set is 
comparable to MLP trained by a larger training data set.  
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3.2  Neuro-SM Models of a HEMT Trained with 
Physics-Based Device Data 
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Fig. 9  Physical structure of a HEMT device 

The high-electron mobility transistor device 
(HEMT)[24] is important in high-frequency circuit 
design. Physics-based numerical simulators and 
equivalent circuit models[25], Ref. [29] have been used 
for HEMT modeling. In this example, based on Ref. 
[14], Neuro-SM is used to learn physics-based data of 
the HEMT device. Training data (dc and bias- 
dependent S-parameter data) were generated from a 
physics-based device simulator, MINIMOS[25], by 
solving the device Poison equations. The HEMT 
structure used in setting up the physics-based simulator 
is shown in Fig. 9. It was modeled by three Neuro-SM 
implementations (circuit-based Neuro-SM with 
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perturbation, circuit-based Neuro-SM with adjoint 
neural network sensitivity of Ref. [26], and the 
Neuro-SM) with three different coarse models, i.e., 

Curtice[27], Statz[28], and Chalmers (Angelov)[29] 
models, resulting in nine cases for extensive studies of 
the Neuro-SM technique. 

 

−1.0 

−0.8 

−0.6 

−0.4 

−0.2 
0 

0 10 20 30 40 

−10 

−5 

0 

5 

10 

15 

0 10 20 30 40 

−20 

−15 

−10 

−5 

0 10 20 30 40 

−10 

−5 

0 

0 10 20 30 40 

|S
11

|/d
B

 

|S
12

|/d
B

 

|S
21

|/d
B

 

|S
22

|/d
B

 

―  Neuro-SM model (mapped model)   
- - - Existing model (without mapping) 
  ο Original HEMT data (MINIMOS) 

f /GHz f /GHz 

f /GHz f /GHz  
a. Statz model 

 ―   Neuro-SM model (mapped model)   
- - -  Existing model (without mapping) 
  ο  Original HEMT data (MINIMOS) 

−0.6 

−0.4 

−0.2 

0 

0 10 20 30 40 

−5 
0 
5 

10 
15 

0 10 20 30 40 

−20 

−15 

−10 

−5 

0 10 20 30 40 

−8 
−6 
−4 
−2 
0 

0 10 20 30 40 

|S
11

|/d
B

 
|S

21
|/d

B
 

|S
22

|/d
B

 
|S

12
|/d

B
 

f /GHz f /GHz 

f /GHz f /GHz  
b. Chalmers model 

Fig. 10  S-parameter comparison between the original HEMT data from MINIMOS,  

existing models (without mapping), and Neuro-SM models in the HEMT example [14] 
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Fig.11  dc comparison between the original HEMT data from MINIMOS, existing models (without mapping),  

and Neuro-SM models in the HEMT example [14]. 
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The comparison of Neuro-SM models and 
original physics data is shown in Fig. 10 and Fig. 11 
for different coarse models (Statz, and Chalmers). Fig. 
10 demonstrates S-parameter comparison between the 
original HEMT data from MINIMOS, existing models 
(without mapping), and Neuro-SM models in the 
HEMT example[14]. All plots show S-parameters in 
decibels versus frequency in gigahertz. Comparison 
was done at four different dc biases at gate voltage 
(−0.4 V, −0.2 V) and drain voltage (0.2 V, 2.4 V). Fig. 
11 demonstrates dc comparison between the original 
HEMT data from MINIMOS, existing models (without 
mapping), and Neuro-SM models in the HEMT 
example[14]. The gate voltage Vg for both models is 
from −0.5 V～−0.1 V. Training of Neuro-SM models 
was done using such dc data and the bias-dependent 
S-parameter data in Fig. 10 simultaneously. 

Mapping neural networks with 10 to 15 hidden 
neurons are found suitable for this example. Training 
time was recorded for 100 iterations on a Pentium IV 
2.8-GHz computer. Neuro-SM enables fast and 
accurate modeling of device physics. To further 
demonstrate the efficiency of the Neuro-SM, the 
trained models were incorporated into ADS to compare 
the evaluation time with MINIMOS. S-parameter 
simulation of 20 frequencies at 150 biases was 
preformed. MINIMOS took approximately 75 min, 
while ADS with the Neuro-SM model used only 10 s. 

4  Conclusions 
This paper describes knowledge based neural 

networks and their recent developments for microwave 
modeling. Four major types of knowledge based 
approaches are overviewed, including the difference 
method, the prior knowledge input method, the space 
mapped neural network method, and the knowledge 
based neural network methods. By incorporating 
knowledge into neural networks, we can obtain better 
model accuracy using limited training data.  This 
approach also provides a platform to combine the 
simplicity of existing empirical and equivalent models 
with the learning capability of neural networks, leading 

to systematic enhancement of existing models through 
computer-based learning.  
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