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Abstract  Deep understanding of P2P overlay network topological characteristics is crucial for improving the 

performance, robustness, and scalability of P2P applications. In this paper, we adopt spectral analysis methods in 
the context of the measured Gnutella network topologies. The properties of spectral density, normalized Laplacian 
spectrum and sign-less Laplacian spectrum are analyzed in detail. The results indicate that the Gnutella overlay 
network is not scale-free network, which has developed over time following a different set of growth processes 
from those of the BA (Barabási-Albert) model. Furthermore, the network core of Gnutella overlays is stable, whose 
NLS and SLS can be treated as the “fingerprint” of the network so as to examine its health status in the face of 
large mass of nodes’ failures. Finally, the power-law for the SLS as well as the two “fingerprint” of Gnutella 
overlays provides us a composite way to qualify the realism of the graphs generated by various P2P network 
models. Our findings as well as analysis techniques have broad applicability to P2P networks and provide useful 
detail insights into P2P overlay network structural properties. 
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Laplacian spectrum;  spectral density;  topology measurements 

基于普特征的Gnutella实例网络特征分析 
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【摘要】深入理解P2P网络拓扑特征是提高P2P应用性能、增强网络鲁棒性和可扩展性的关键所在。该文对采集到的Gnutella

网络拓扑进行普特征分析，包括普密度、规格化拉普拉斯普、无符号拉普拉斯普等。实验结果表明，Gnutella网络不属于BA

及其演变模型生成的无标度网络，其网络核较为稳定。它的NLS和SLS可以作为Gnutella网络的指纹特征用以检测大规模节点
失效情况。SLS的幂律特性和指纹特性还能用作衡量P2P网络生成模型真实性的指标。分析结果能够应用于P2P网络优化，并
为P2P网络结构特征分析提供了一个有效的方法。 
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Recently, significant research efforts have been 

invested in measuring and analyzing characteristics of 

P2P overlay networks. The current P2P (e.g., Gnutella 

network) overlay networks are the results of dynamic, 

heterogeneous and distributed growth without 

controlled mechanism by central servers. Therefore, 

their topologies are not the products of a deliberate 

engineering attempt aimed at obtaining the best global 

solution possible. Investigating the characteristics of 

P2P overlay networks is important for several reasons. 

Firstly, it can lead to an improved understanding of the 

P2P overlay networks, e.g., behavior in the presence of 

node or link failures. Then, it allows new message 

routing algorithms, protocols, and repair strategies in 

the face of failures to be designed and tuned so as to 

make the best possible performance of P2P 
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applications. Particularly, optimization problems 

related to resource allocation, message routing and 

network resilience (e.g., DDos attack prevention), 

which are provably difficult to solve with zero 

knowledge about P2P overlays topologies, may find 

efficient solutions when deep understanding of the real 

P2P overlay topologies obtained. Furthermore, if 

certain aspects of the topologies are found to be 

detrimental to the efficient operation of P2P 

applications, this knowledge might encourage system 

designers to implement the required topology changes. 

Finally, a good understanding of P2P networks 

topologies and behaviors can lead to improvements in 

network topology generators in order to generate 

networks of various sizes and P2P systems for 

simulations. Network simulations can again help to 

design, tune and evaluate new algorithms and 

mechanisms. It is well recognized that the lack of an 

appropriate model has made it difficult to analyze and 

simulate resilience and behaviors of P2P systems in the 

face of certain problems related to network securities. 

Unfortunately, most of the work in this field is 

focused on measuring and analyzing the degree 

distributions of the P2P overlay networks[1-4]. The 

detailed scrutiny of the topological properties of 

complex networks has pointed out that graphs with the 

same degree distributions may have totally different 

structures; more parameters (e.g., clustering 

coefficients, joint degree distributions, and network 

diameter etc.) are needed for accurately describing 

their structural characteristics. There is a rich literature 

that proves that the spectrum of a graph are closely 

related to many basic topological properties such as the 

diameter, the number of edges, the number of spanning 

trees, the number of connected components, and the 

number of walks of a certain length between vertices. 

The connection between spectrum and graph 

connectivity, including clustering, has been extensively 

studied in discrete mathematics, and has found very 

successful applications in information retrieval and 

data-mining where clusters represent groups of data 

with semantic proximity. Practical experience suggests 

that spectral analysis might be better suited for data 

which lack regularity. 

In this paper, we adopt spectral analysis methods 

in the context of the Gnutella overlays with snapshots 

achieved during Aug. 2005 to Mar. 2006 by our 

distributed Gnutella topology capturing system (called 

D-Crawler). Our analyzing steps can be described as: 1) 

Snapshots of P2P overlays (e.g., Gnutella network) are 

captured by D-Crawler system, after which, some 

post-processing is performed to minimize the errors 

introduced by D-Crawler so as to keep topological data 

consistency of each P2P graphs. 2) By analyzing the 

degree distributions and network correlations of P2P 

overlays (e.g., Gnutella network), we filter the overlay 

topologies to extract the network cores, which play as 

inter-joint connections of the network. 3) We compute 

as well as sort the eigenvalues λi of the adjacency 

matrix, the normalized Laplacian matrix, and the 

sign-less Laplacian matrix of the network cores, 

respectively. Spectral properties of the overlays are 

analyzed by comparing with the classical graphs such 

as random graphs and BA model generated graphs.  

1  Related Work 

Ref. [5] examined the spectrum of the adjacency 

matrix of the AS level Internet topology, without 

performing any normalization or other transformation. 

Power-law exponents were proposed to describe the 

highly-skewed Internet graphs, and they were reported 

a power-law on about twenty largest eigenvalues of the 

matrix with exponent between 0.45 and 0.5. Ref. [6] 

found that the normalized Laplacian spectrum of the 

Internet topologies on the AS level is an excellent 

candidate as a concise fingerprint of Internet graphs, 

which leads to a new structural classification of AS 

graphs with plausible interpretations in networking 

terms. The normalized Laplacian spectrum is treated as 

one of the standard metrics used in the comparison of 

network topology graphs. In Ref. [7], it is observed 

that Faloutsos’ eigenvalue power-law is a direct 

consequence of the degree sequence power-law, 

namely, for graphs where the largest degrees follows 

Zipf with exponent α, the largest eigenvalues follow a 

power-law with exponent close to α/2. Ref. [8] adopted 

the spectral filtering method in the context of the entire 

as well as sub-graphs of the AS level Internet 
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topologies by performing inverse frequency 

normalization via stochastic matrices. They found that 

the clustering properties vary in the core and the edge 

of the network and across geographic areas, but persist 

over time. It is also pointed out that eigenvectors 

associated with the largest eigenvalues are suggestive 

of non-trivial intra-cluster traffic patterns that cause 

significant decrease in the link stress. 

Recently, P2P file-sharing systems have evolved 

in many ways to accommodate growing numbers of 

participating peers. New features have changed the 

properties of their topology. But, little is known about 

the characteristics of these topologies and their 

dynamics in modern file-sharing applications. 

Measuring and analyzing the properties of P2P overlay 

network is still an open problem. Jovanovic[9] 

measured the Gnutella system in 2001 for the first time, 

which find that the Gnutella network topology is 

small-world and its degree distribution follows power 

law. As the limitations of Gnutella network old 

protocols, the number of total nodes achieved by 

Jovanovic is about 1K, which weakens its validation in 

representing the whole Gnutella network. In 2002, Ref. 

[10] performed a detailed study of the two popular P2P 

file sharing systems, namely Napster and Gnutella, 

which characterizes the population of end-user hosts 

participating in these two systems, including 

bottleneck bandwidth between hosts, IP-level latencies, 

frequency of hosts connecting and disconnecting from 

the systems, and the degree of cooperation between the 

hosts etc.  The measurements show that there is 

significant heterogeneity and lack of cooperation 

across peers in these two P2P systems. The number of 

hosts achieved is about 11 K for the lack of new 

methods to discover nodes in the P2P networks. 

Features of topology properties are not analyzed. Ref. 

[2] implemented a distributed crawling system of 

Gnutella network, which could capture about 30 K 

peers in a few hours. The study concludes that the 

degree distributions of Gnutella network follows 

power-law, but the overlay network does not match the 

underlying Internet topology which leads to ineffective 

use of physical networking infrastructure. With the 

evolvement of the Gnutella, the properties changed 

significantly. A new kind of high-speed distributed 

crawler (called Cruiser) of Gnutella network was 

constructed[3], which utilizes hierarchical structure of 

the new Gnutella protocols; it can achieve nodes’ 

information at the speed of 140 K per minute with 6 

linux box machines. The degree distributions between 

ultra peers and ultra and leaf peers are analyzed, which 

has the conclusions that Gnutella overlay network is 

small-world but does not follow power-laws. 

In practice, the Laplacian matrix as well as the 

adjacency matrix of a graph and their eigenvalues can 

be used in several areas of network research and have 

physical interpretations in Ref. [6] examined the 

spectrum of the adjacency matrix of the AS level 

Internet topology, without performing any 

normalization or other transformation. Power-law 

exponents were proposed to describe the 

highly-skewed Internet graphs, and they were reported 

a power-law on about twenty largest eigenvalues of the 

matrix with exponent between 0.45 and 0.5. Ref. [7] 

found that the normalized Laplacian spectrum of the 

Internet topologies on the AS level is an excellent 

candidate as a concise fingerprint of Internet graphs, 

which leads to a new structural classification of AS 

graphs with plausible interpretations in networking 

terms. The normalized Laplacian spectrum is treated as 

one of the standard metrics used in the comparison of 

network topology graphs. In Ref. [8], it is observed 

that Faloutsos’ eigenvalue power-law is a direct 

consequence of the degree sequence power-law, 

namely, for graphs where the largest degrees follows 

Zipf with exponent α, the largest eigenvalues follow a 

power-law with exponent close to /2. Ref. [11] 

adopted the spectral filtering method in the entire 

context as well as sub-graphs of the AS level Internet 

topologies by performing inverse frequency 

normalization via stochastic matrices. They found that 

the clustering properties vary in the core and the edge 

of the network and across geographic areas, but persist 

over time. It was also pointed out that eigenvectors 

associated with the largest eigenvalues are suggestive 

of non-trivial intra-cluster traffic patterns that cause 

significant decrease in the link stress. 

Recently, P2P file-sharing systems have evolved 
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in many ways to accommodate growing numbers of 

participating peers. New features have changed the 

properties of their topology. But, little is known about 

the characteristics of these topologies and their 

dynamics in modern file-sharing applications. 

Measuring and analyzing the properties of P2P overlay 

network is still an open problem. Ref. [9] measured the 

Gnutella system in 2001 for the first time, and it was 

found that the Gnutella network topology is 

small-world and its degree distribution follows power 

law. As the limitations of Gnutella network old 

protocols, the number of total nodes achieved by 

Jovanovic is about 1 K, which weakens its validation 

in representing the whole Gnutella network. In 2002, 

Ref. [10] performed a detail study of the two popular 

P2P file sharing systems, namely Napster and Gnutella, 

which characterizes the population of end-user hosts 

participating in these two systems, including 

bottleneck bandwidth between hosts, IP-level latencies, 

frequency of hosts connecting and disconnecting from 

the systems, and the degree of cooperation between the 

hosts, etc.  The measurements show that there is 

significant heterogeneity and lack of cooperation 

across peers in these two P2P systems. The number of 

hosts achieved is about 11 K for the lack of new 

methods to discover nodes in the P2P networks. 

Features of topology properties are not analyzed. Ref. 

[2] implemented a distributed crawling system of 

Gnutella network, which could capture about 30 K 

peers in a few hours. The study concluded that the 

degree distributions of Gnutella network follows 

power-law, but the overlay network does not match the 

underlying Internet topology which leads to ineffective 

use of physical networking infrastructure. With the 

evolvement of the Gnutella, the properties changed 

significantly. A new kind of high-speed distributed 

crawler (called Cruiser) of Gnutella network was 

constructed[3], which utilizes hierarchical structure of 

the new Gnutella protocols; it can achieve nodes’ 

information at the speed of 140 K per minute with 6 

linux box machines. The degree distributions between 

ultra peers and ultra and leaf peers are analyzed, which 

draws the conclusions that Gnutella overlay network is 

small-world but has not network applications. 

Eigenvalues associated with a network graph are 

closely related to its topological characteristics 

including network clustering, correlations, long paths, 

bottlenecks, etc. It is found in Ref. [11] that the 

component of the eigenfunction corresponding to the 

largest eigenvalue at the hub is independent of the 

scale-free network size, which implicates that the hub 

plays a much more important role in transporting than 

expected according to the normalized degree. This 

finding is very useful to help the understanding of the 

efficiency in communication networks to construct 

central vertices, through which most of the information 

traffic passes. Ref. [8] used the eigenvectors 

corresponding to the largest eigenvalues of the 

Laplacian matrix to find clusters of Internet AS level 

topologies with certain characteristics (e.g., geographic 

locations and business interests). 

In general, we investigate detail properties of P2P 

overlay networks (e.g., Gnutella overlays) by spectral 

analysis methods, which, we believe, is one of the 

practical methods to measuring P2P network 

performance as well as robustness in face of nodes or 

links failures.  

2  Gnutella Overlays and Datasets 

We have designed and developed a distributed 

crawler of Gnutella system (called D-Crawler) based 

on positive feedback crawling strategies, which 

positively contacts known ultra peers to obtain several 

pieces of information including: 1) client’s version 

string; 2) peer’s type (ultra peer or leaf peer); 3) a list 

of peer’s neighbors; 4) a list of peer’s leaf neighbors. 

The system can automatically choose stable graphs and 

adapt its crawling behaviors according to the statistical 

properties of the snapshot achieved previously. 

D-Crawler system can capture more accurate and 

complete snapshots with nodes’ information achieving 

speed at about 160 K per minute using three P4 2.8 

GHz/1 G RAM PCs. Figure 1 illustrates the framework 

of D-Crawler system, the Details about D-Crawler 

system are discussed deliberately in Ref. [12]. After 

required information is collected from all peers, some 

post-processing should be performed to remove any 

obvious inconsistence that has been introduced due to 
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the dynamic changes in the Gnutella network during 

the crawling period, which includes: 1) converting 

snapshots into undirected graphs; 2) ignoring leaves 

which declaring themselves as the neighbors of ultra or 

legacy peers; 3) ignoring leaves that are parents of 

other leaves. About 1% of nodes and links are 

influenced by the post-processing. We have captured 

hundreds of snapshots during Aug. 2005 to Mar. 2006, 

three of which are selected randomly for detail analysis 

in this paper, the overall information of these snapshots 

is shown in table 1.  

Topo. 
collection

Post-processing

Data analysis

System feed 
backs

Results

Profiles

Output

Topo. 
database

Topo. data

Processed data

Replace
-ments

Validate

Degree distributions 
& degree rank

Profiles

Entry nodes 
set

Initial 
input

 
Fig. 1  The framework of D-Crawler system 

Table 1  The overall information of the selected snapshots, 
       in which the Avg. of top-level means average 

      neighbors of top-level peers, and the Avg.  
      of leaves means average parents of leaves 

 2005-11-25 2005-12-10 2005-12-20 Avg. 

Total nodes 1 758 761 1 729 613 1 727 945 1 738 773

Top level 463 885 466 810 465 959 465 551 

Leaves 1 294 876 1 262 803 1 261 986 1 273 221

Avg. of top-level 74.01 74.02 74.28 74.10 

Avg. of leaves 1.38 1.38 1.38 1.38 

 

Gnutella overlays are such a huge network that it 

becomes a tough task to calculate the spectrum of the 

whole network. We use filtering methods to extract the 

network core of Gnutella graphs, which are based on 

the properties of degree distributions and network 

correlations of Gnutella topologies. Peers in the 

network core are stable (e.g., excellent network 

bandwidth and long up-time), which perform as joint 

connections of Gnutella overlays. The details of the 

filtering methods are not discussed here for lack of 

space. 

3  Spectral Analysis of Gnutella  
Overlays 

Let G(V,E), |V|=N, be an undirected graph and let 

A(G) be its adjacency matrix: aij=1 if and only if 

( , )i j E ; aij=0 otherwise. Since G is undirected, A(G) 

is symmetric aij=aji. Let e be an N-dimension real 

vector, then e is an eigenvector of A with eigenvalue  

if and only if A e e . It is a well known fact of linear 

algebra that every N  N real symmetric matrix A(G) 

has a spectrum of N orthonormal eigenvectors 

1 2, , , Ne e e , with real eigenvalues 1≥2≥…≥N. 

The spectrum of the graph G is the collection of all 

eigenvalues. 

In this section, we analyze the spectral 

characteristics of the three snapshots listed in table 1, 

including spectral density (SD), sign-less Laplacian 

spectrum (SLS), and normalized Laplacian spectrum 

(NLS). These reflect the basic topological properties of 

Gnutella overlays, which can be used for analyzing 

resilience of Gnutella overlays when facing nodes or 

links failures.  

3.1  Spectral density 

The spectral density of the graph G is the density 

of the eigenvalues of A(G), which can be written as a 

sum of δ functions 

1

1
( ) ( )

N

j
jN

    


   

where j is the jth largest eigenvalue of  A(G). When 

N→∞, ρ() converges to a continuous function. 

In N→∞ limit, the spectral density of the 

uncorrelated random graph converges to the semicircle 

distribution, at the edge of the semicircle, it decays 

exponentially, and with N→∞, the decay rate diverges. 

However, the spectral density of scale-free networks 

(e.g., BA networks) decays exponentially for small ||, 
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followed by power-law tails at both spectrum edges. 

The spectral density distributions of the three 

snapshots of Gnutella overlays are plotted in figure 2. 

In order to keep figures simple, for the spectral density 

plots (in the main panel) we choose to rescale the 

horizontal () and vertical (ρ) axes by [Np(1p)]1/2 and 

[Np(1p)]1/2, where Np equals to the average degree of 

Gnutella overlays. The inset of the figure 2 shows the 

cumulative spectral distribution of the snapshots, in  

which 1( ) iF N    .  

It is observed that: 1) the central part of the 
snapshots’ spectral density is triangle like for the 
rescaled  values up to 0.02, not semicircular; 2) there 
exist two sharp maxima near 0.1   symmetrically; 3) 
at the edge of the semicircle (see the inset), i.e., in 

the 0.3 (1 )pN p    regions, the spectral density 

decays exponentially, and with N→∞, the decay rate 
diverges. 
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Fig. 2  The spectral density of the three snapshots 

The results indicate that: 1) the spectral density 

distributions of Gnutella overlays do not follow 

Wigner’s law, which shows that the overlays are not 

pure random graphs; 2) although the central part of the 

spectral density is triangle like, but the Gnutella 

overlays are not scale-free networks for the existence 

of sharp maxima, which suggests that the 

developments of Gnutella overlays follow a different 

set of growth progresses from those of the BA model. 

3.2  Normalized Laplacian spectrum 

Associate with A(G) is a diagonal matrix D(G) 

with row-sums of A(G) as the diagonal elements. D(G) 

indicates the connectivity degree of each node. The 

Laplacian matrix is defined as L(G)=D(G)A(G). The 

spectrum of L(G) is closely related to certain graph 

invariants. The normalized Laplacian matrix NL(G) is 

defined as[13]: 

1              if =  and 0

1
NL( , ) if  and  are adjacent

0             otherwise

i

i j

 i j d

i j  i j
d d

 
 




 

where di and dj are the degrees of nodes i and j in 
adjacency matrix A(G) of graph G, respectively. 
Considering the matrices A(G) and D(G), the NL(G) of 

graph G can be written as: 
1 1

2 2NL( ) ( )G D D A D


  . 

The normalized Laplacian spectrum (NLS) is the set of 
eigenvalues of NL(G). 

We compute N eigenvalues of NL(G) of the three 

snapshots, and sort them in non-decreasing order as 1

≤2≤≤N. For any graph G, 1 is always 0, the 

multiplicity of eigenvalue 0 is equal to the number of 

connected components of G, the largest eigenvalue is 

equal to or less than 2. For the convenience to compare 

the NLS of Gnutella overlay graphs with different 

number of nodes, the order of each  is normalized by 

N1. 

The NLS results of the three snapshots as well as 

those of BA and random graphs with the same number 

of vertex and edge are shown in figure 3. We found 

remarkably similar plots of the NLS for the three 

snapshots of Gnutella network as well as the 

multiplicity of eigenvalue 1, although the snapshots 

have different number of peers. Comparing the facts 

and plots about the NLS of random trees and BA 

graphs, it shows that NLS can be used as a kind of 

“fingerprint” for Gnutella overlay topologies, even for 

dynamic graphs that are difficult to achieve their 

topological characteristics. 

In particular, the second smallest eigenvalues (λ2) 

of the three snapshots are 0.020, 0.018 and 0.015 

respectively. The 2 is one of the most important 

eigenvalues for analyzing properties of graphs, which 

is closely related to the diameter and the mean distance 

of networks[14]. The variance of 2 for each Gnutella 

snapshots reflects the dynamic property of Gnutella 

overlays. The corresponding eigenvector V2 is used for 

graph partitioning, the results indicate that the network 

core of Gnutella overlays are connected evenly, i.e., the 

core is not much clustered.  
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Fig. 3  The normalized Laplacian spectrum 

of the three snapshots 

3.3  Sign-less Laplacian spectrum 

The sign-less Laplacian matrix of graph G is 

defined as: SL(G)=D(G)+A(G), the sign-less Laplacian 

spectrum (SLS) is the set of eigenvalues of SL(G). 

Among matrices associated with graph G, the SL(G), 

together with SLS, is the most convenient method to 

study properties of graph G, and treated as standard 

spectrum matrix to identify as well as construct 

co-spectral graphs[15]. 

We compute and plot N eigenvalues of SL(G) of 

the Gnutella overlays in descending order, as 

illustrated in figure 4. The order of each  is 

normalized by N1 for the convenience of comparison. 
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Fig. 4  The sign-less Laplacian spectrum of the three snapshots 

(axis y is in log-log scale) 

The sign-less Laplacian spectrum of Gnutella 

overlays has following properties: 1) it remains 

dramatically stable (similar to the NLS) and has 

property of heavy-tail distributions in spite of the 

difference in peers’ number for the three snapshots. 

Comparing the plots of BA and random graphs with 

the same number of vertices and edges, the SLS can 

also be treated as the other “fingerprint” of Gnutella 

overlays; 2) the plots for the eigenvalues larger than 1 

follow the power-law with the eigen exponent ε ≈ 

1.12, the ACC (Absolute Correlation Coefficient) of 

the linear fitting results is about 0.99.  

4  Conclusions and Future Work 

In this paper, we presented the detailed spectral 

analysis of Gnutella overlays that is a typical one of 

the unstructured P2P file sharing systems. Our main 

findings are: 

1) The network core of Gnutella overlay is not a 

pure random graph for the spectral density, which does 

not follow Wigner’s law. 

2) The NLS and SLS of Gnutella network remain 

remarkably similar despite of the difference in 

snapshots’ size. As the result, we treat NLS and SLS as 

the “fingerprint” for identifying the topological 

properties of Gnutella overlays.  On the other hand, 

by analyzing 2 and V2 of each NLS, we find that the 

network core of Gnutella network is not a clustered 

graph.  

3) The results indicate that the BA model, which 

produces graphs with pure power-law properties, can 

not describe the Gnutella overlay accurately either in 

its degree distributions or in its spectrum. 

This study developed essential insights into the 

properties of Gnutella overlay topologies which are 

necessary to improve the design and evaluation of 

peer-to-peer applications. The two “fingerprints” allow 

us to determine whether or not the structure of P2P 

overlays (e.g., Gnutella overlay) keep in the health 

status, especially in the face of mass nodes’ failures. 

Furthermore, by comparing the SLS and NLS of 

measured topologies with that of P2P network 

topology generators, we could find the similarity 

between them so as to verify the validation of the P2P 

network models. Finally, the efficiency of message 

routing for the network core of Gnutella may be low 

for the peers in the core that are not connected closely, 

and the biased forwarding of queries should be adopted 

to increase routing efficiency and reduce loads of the 

peers in the core. 

We are continuing this work in several directions, 

primarily based on continuously collecting more 

accurate snapshots from Gnutella. First, we intend to 
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study more closely the relations exist between 

topological properties. Second, we plane to examine 

dynamics of clients’ participation and variations in 

topology structure. Third, topological characteristics of 

other P2P systems such as eDonkey, Overnet and BT 

are to be measured and analyzed by applying our 

techniques. Lastly, some network performance and 

resilience problems related to P2P topology structures 

will be analyzed. 
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