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Abstract  In this paper we present a very expressive fuzzy description logic framework, L-SROIQ(D), based 

on certainty lattices, which is a fuzzy extension of the description logic SROIQ(D) (theoretical basis of the 
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【摘要】提出了一种基于可信度格的Expressive模糊描述逻辑框架，对描述逻辑SROIQ(D)进行了模糊化扩充，建立了一
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下的将模糊描述逻辑L-SROIQ(D)转换为经典描述逻辑SROIQ(D)的推理算法，从而证明了线序格下L-SROIQ(D)的可满足性推
理是可判定的。 
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The Semantic Web[1] has recently attracted much 

attention, both from academia and industry, and is 

widely regarded as the next step in the evolution of the 

World Wide Web. It aims at an extension of the current 

Web by standards and technologies that help machines 

to understand the information on the Web so that they 

can support richer discovery, data integration, 

navigation, and automation of tasks. The main ideas 

behind it are to add a machine-understandable 

“meaning” to web pages, to use ontologies for a 

precise definition of shared terms in web resources, to 

use KR technology for automated reasoning from web 

resources, and to apply cooperative agent technology 

for processing the information of the Web[2]. This 

vision has led to the introduction of a stack of new 

generation ontology definition languages. 

An ontology is defined as an explicit and formal 

specification of a shared conceptualization[3], which 

means that ontologies represent the concepts and the 

relationships in a domain promoting interrelation with 

other models and automatic processing. Ontologies 

allow to add semantics to data, making knowledge 

maintenance, information integration as well as the 

reuse of components easier[4]. The current standard 

language for ontology creation is the Web Ontology 

Language (OWL), which comprises three 

sublanguages of increasing expressive power: OWL 

Lite, OWL DL and OWL Full. An extension of OWL is 
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OWL 2[5-6]. 

Description Logics (DLs for short)[7] are a family 

of logic-based knowledge representation formalisms 

that are tailored towards representing the 

terminological knowledge of an application domain in 

a structured and formally well-understood way. DLs 

have proved to be very useful as ontology languages[8]. 

For example, OWL Lite, OWL DL and OWL 2 are 

essentially very expressive DLs with an RDF syntax. 

More specifically, OWL Lite, OWL DL and OWL 2 

are nearly equivalents to the DLs SHIF(D), SHOIN(D), 

and SROIQ(D), respectively[4, 9-11]. 

Nevertheless, it has been widely pointed out that 

classical ontology languages and DLs are not 

appropriate to deal with imprecise and vague 

knowledge, which is inherent to several real world 

domains[2,4,12]. The rising popularity of DLs and their 

use, and the need to deal with uncertainty and 

vagueness, both especially in the Semantic Web, is 

increasingly attracting the attention of many 

researchers and practitioners towards DLs able to cope 

with uncertainty and vagueness[2]. Especially, there are 

many works attempted to extend the DLs using fuzzy 

set theory[13], that is, fuzzy DLs[4,9-11,14-19] are presented 

based on fuzzy set theory. For a more detailed survey 

on fuzzy DLs the reader is referred to Ref. [2]. 

The above-mentioned fuzzy DLs can only address 

quantitative reasoning (by relying e.g. on [0, 1]), but 

can not address qualitative uncertainty reasoning (by 

relying e.g. on {false, likelyfalse, unknown, likelytrue, 

true}, in increasing order)[20]. In order to address 

qualitative uncertainty reasoning, Ref. [20] extends 

DLs allowing to express that a sentence is not just true 

or false like in classical DLs, but certain to some 

degree, which is taken from a certainty lattice, and 

presents fuzzy description logic over lattices L-ALC. 

The adopted approach is more general than the fuzzy 

logic based approach[17], as the adopted approach 

subsumes the fuzzy logic based approach (just take the 

lattice over the real unit interval [0, 1] with order ≤) 

and four-valued DLs such as Ref. [21] and Ref. [22], 

but is orthogonal to almost all other approaches. 

Subsequently, Ref. [23] extend L-ALC and present 

fuzzy description logic over lattices with number 

restrictions L-ACLN. Recently, Ref. [24] consider a 

fuzzy extension of SHIN based on certainty lattices, 

present fuzzy description logic over lattices L-SHIN. 

Obviously, we know that classical description 

logics (denoted by DLs) ALC[25], ALCN[7], SHIN[16] 

and SROIQ(D)[9-10], fuzzy description logics based on 

fuzzy logic (denoted by f-DLs) f-ALC[17], f-ALCN[26], 

f-SHIN[16] and f-SROIQ(D)[9-10], and fuzzy description 

logics over lattices (denoted by L-DLs) L-ALC[20], 

L-ALCN[23] and L-SHIN[24] have relationships 

depicted in Fig. 1: 
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Fig. 1  DLs, f-DLs and L-DLs 

From Fig. 1, it is naturally known that we need a 

novel fuzzy description logic L-SROIQ(D), which is 

the extension of L-SHIN and f-SROIQ(D). In the 

current paper, we extend the results obtained in Ref. 

[24] for L-SHIN and in Ref. [9] and Ref. [10] for 

f-SROIQ(D), thus creating L-SROIQ(D). In this paper 

we consider a fuzzy extension of SROIQ(D) based on 

certainty lattices, present the very expressive fuzzy 

description logic over lattices L-SROIQ(D), and give 

its syntax and semantics. 

1  Preliminaries 

The current section provides some background. 

Section 1.1 describes SROIQ(D), the DL which stands 
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behind the Web ontology language OWL 2. Section 1.2 

recalls some basic notions of certainty lattices. See 

especially Ref. [4,9-10,20,27] for further details and 

background. 

1.1  The description logic SROIQ(D) 

SROIQ(D)[9-10] extends ALC standard DL[25] with 

transitive roles, complex role axioms, nominals, 

inverse roles, qualified number restrictions, and 

concrete domain. 

First, we present the syntax of SROIQ(D). 

A concrete domain[28-29] is a pair ΔD, D, where 

ΔD is a concrete interpretation domain and D is a set 

of domain predicates d with a predefined arity n and an 

interpretation dDΔD
n. For simplicity we assume arity 1. 

As usual, SROIQ(D) assumes three alphabets of 

symbols, for concepts, roles, and individuals. In DLs, 

complex concepts and roles can be built using different 

concept and role constructors. In SROIQ(D), the 

concepts (denoted C or D) and abstract roles (R) can be 

built inductively from atomic concepts (A), atomic 

roles (RA), top concept ⊤, bottom concept ⊥, named 

individuals (oi), simple roles (S, which will be defined 

below), universal role (U), and concrete roles (T). 

Concretely, SROIQ(D)-concepts are composed 

inductive according to the following abstract syntax: 

C, D⊤| ⊥| A| C| C⊓D| C⊔D| R.C| R.C| 

T.d| T.d| {o1, o2,…, om}|≥n S.C|≤n S.C|≥n T.d|≤n 

T.d| S.Self, where n, m denote natural numbers (n≥0, 

m>0). 

SROIQ(D)-roles are composed inductive 

according to the following abstract syntax: 

R  RA| R| U| T, where R denotes inverse role. 

A Knowledge Base (KB) comprises two parts: the 

intensional knowledge, i.e., general knowledge about 

the application domain (a Terminological Box or TBox 

(TB) and a Role Box or RBox (RB)), and the 

extensional knowledge, i.e., particular knowledge 

about some specific situation (an Assertional Box or 

ABox (AB) with statements about individuals). 

An ABox (AB) consists of a finite set of 

assertions about individuals: concept assertions a:C, 

abstract role assertions (a, b):R, negated abstract role 

assertions (a, b):R, concrete role assertions (a, v):T, 

negated concrete role assertions (a, v):T, inequality 

assertions ab, and equality assertions a=b. 

A TBox (TB) consists of a finite set of general 

concept inclusion (GCI) axioms C⊑D (C is more 

specific than D). 

Let w be a role chain (a finite string of roles not 

including the universal role U). An RBox RB consists 

of a finite set of role axioms: role inclusion axioms 

(RIAs) w⊑R, transitive role axioms trans(R), disjoint 

role axioms dis(S1, S2), reflexive role axioms ref(R), 

irreflexive role axioms irr(S), symmetric role axioms 

sym(R), and asymmetric role axioms asy(S). 

Now we will introduce some definitions which 

will be useful for imposing some limitations in the 

language. A strict partial order ≺ on a set A is an 

irreflexive and transitive relation on A. A strict partial 

order ≺ on the set of roles is called a regular order if it 

also satisfies R1≺R2  R2
≺R1, for all roles R1 and R2. 

In order to guarantee the decidability of the logic, 

there are some restrictions in the use of roles. Given a 

regular order ≺, every role axiom cannot contain U 

and every RIA should be ≺regular. A RIA w⊑R is 

≺regular if R is atomic and: 1) w=RR, or 2) w=R, or 

3) w=S1, S2,…, Sn and Si≺R for all i=1, 2,…, n, or 4) 

w=RS1, S2,…, Sn and Si≺R for all i=1, 2,…, n, or 5) 

w=S1, S2,…, SnR and Si≺R for all i=1, 2,…, n. 

Note that, in order to prove decidability of the 

reasoning, roles are assumed to be simple in some 

concept constructors (local reflexivity, at-least and 

at-most number restrictions) and role axioms (disjoint, 

irreflexive and asymmetric role axioms)[27]. Simple 

roles are inductively defined as follows: 1) RA is 

simple if it does not occur on the right side of a RIA, 2) 

R is simple if R is, 3) if R occurs on the right side of a 

RIA, R is simple if, for each w⊑R, w=S for a simple 

role S. 

Let us now turn to the semantics of SROIQ(D). 

An interpretation I with respect to a concrete 

domain D is a pair I=(ΔI, I), where ΔI is a non-empty 

domain of the interpretation disjoint with D, and I is 

an interpretation function that maps each atomic 

concept A to a set AIΔI, each abstract atomic role RA 

to a binary relation RA
IΔIΔI, each concrete role T to 

a binary relation TIΔID, each abstract individual 

name a to an element aIΔI, each concrete individual 
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name v to an element vDΔD, and each n-ary concrete 

predicate d to a set dDΔD
n. The interpretations of 

complex concepts and roles are shown as follows: 

1) ⊤I=ΔI, ⊥I=, (C)I=ΔI\CI, (C⊓D)I=CI  DI, 

(C⊔D)I=CI DI; 

2) (R.C)I={aΔI| bΔI, (a, b)RIbCI}, 

(R.C)I={aΔI| bΔI, (a, b)RIbCI}; 

3) (T.d)I={aΔI| vΔD, (a, v)TIvdD}, 

(T.d)I={aΔI| vΔD, (a, v)TIvdD}; 

4) {o1, o2,…, om}I={o1
I, o2

I,…, om
I}, (S.Self)I= 

{aΔI| (a, a)SI}; 

5) (≥n S.C)MI={aΔI| #{bΔI| (a, b)SIbCI}

≥n}; 

6) (≤n S.C)MI={aΔI| #{bΔI| (a, b)SIbCI}

≤n}; 

7) (≥n T.d)MI={aΔI| #{vΔD| (a, v)TIvdD}

≥n}; 

8) (≤n T.d)MI={aΔI| #{vΔD| (a, v)TIvdD}

≤n}; 

9) (R)I={(b, a)ΔIΔI| (a, b)RI}, UI=ΔIΔI. 

where #X denotes the cardinality of the set X. 

Let  be the standard composition of relations. An 

interpretation I satisfies (is a model of): 

1) a:C iff aICI, (a, b):R iff (aI, bI)RI, (a, b):R 

iff (aI, bI)RI; 

2) (a, v):T iff (aI, vD)TI, (a, v):T iff (aI, vD)TI; 

3) ab iff aIbI, a=b iff aI=bI, C⊑D iff CIDI, R1, 

R2,…, Rn⊑R iff R1
I, R2

I,…, Rn
IRI; 

4) trans(R) iff (a, b)RI and (b, c)RI imply (a, 

c)RI, a, b, cΔI; 

5) dis(S1, S2) iff S1
I S2

I=, ref(R) iff aΔI, (a, 

a)RI, irr(S) iff aΔI, (a, a)SI; 

6) sym(R) iff (a, b)RI implies (b, a)RI, a, 

bΔI; 

7) asy(S) iff (a, b)SI implies (b, a)SI, a, bΔI; 

8) a knowledge base KB=AB, TB, RB iff it 

satisfies each element in AB, TB and RB. 

A DL not only stores axioms and assertions, but 

also offers some reasoning services, such as KB 

satisfiability, concept satisfiability or subsumption. 

However, if a DL is closed under negation, most of the 

basic reasoning tasks are reducible to KB satisfiability, 

so it is usually the only task considered[4,30]. 

1.2  Certainty lattices 

Let L=CV, ≼ be a certainty lattice (a complete 

lattice)[20,24], where CV is a set of certainty values and 

≼ is a partial order over CV. Let  and  be the join 

and meet operators induced by ≼, respectively. Let f 

and t be the least and greatest element in CV, 

respectively. We also assume that there is a function 

from CV to CV, called negation function (denoted by 

) that is anti-monotone w.r.t. ≼ and satisfies =, 

CV. The main idea is that an assertion a:C, rather 

being interpreted as either true or false, will be mapped 

into a certainty value c in CV. The intended meaning is 

that c indicates to which extend (how certain it is that) 

“a is a C”. 

Typical certainty lattices are (given a set of real 

values CV, consider LCV=CV, ≼) as follows. 

Classical 0-1: L{0,1} corresponds to the classical 

truth-space, where 0 stands for ‘false’, while 1 stands 

for ‘true’. 

Fuzzy: L[0,1], which relies on the unit real interval, 

is quite frequently used as certainty lattice. In L[0,1], 

=1 is quite typical. 

Four-valued: Another frequent certainty lattice is 

Belnap’s FOUR[31], where CV is {f, t, u, i} with f≼u≼t 

and f≼i≼t. Here, u stands for ‘unknown’, whereas i 

stands for inconsistency. We denote the lattice as LB. 

Additionally, besides f=t, we have u=u and i=i. 

Many-valued: L=
1 2

{0, , , ,1},
1 1

n

n n


 
 ≤ , n  

positive integer. A special case is L4, where CV is {f, lf, 

lt, t} with f≤lf≤lt≤t. Here, lf stands for ‘likely false’, 

whereas lt stands for ‘likely true’. Besides f=t, we 

have lf=lt. 

Belief-Doubt: A further popular lattice allows us 

to reason about belief and doubt. Indeed, the idea is to 

take any lattice L, and to consider the cartesian product 

LL. For any pair (b, d)LL, b indicates the degree of 

believing a reasoning agent has about a sentence s, 

while d indicates the degree of doubting the agent has 

about s. The order on LL is determined by (b, d)≼(b, 
d) iff b≼b and d≼d, i.e., belief goes up, while doubt 

goes down. The minimal element is (f, t) (no belief, 

maximal doubt), while the maximal element is (t, f) 

(maximal belief, no doubt). Negation is given by (b, 
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d)=(d, b) (exchange belief with doubt). 

2  Fuzzy description logic over  
lattices L-SROIQ(D) 

In this section we define the fuzzy DL over 

lattices L-SROIQ(D), which is a fuzzy extension of the 

DL SROIQ(D) where concepts denote fuzzy sets of 

individuals, roles denote fuzzy binary relations, and 

axioms are extended to the fuzzy case in such a way 

that some of them hold to a degree in a certainty lattice L. 

2.1  Syntax and semantics 

A fuzzy concrete domain D is a pair ΔD, D, 
where ΔD is a concrete interpretation domain, D is a 

set of fuzzy concrete predicates d with an arity n and 

an interpretation dD: ΔD
n  CV, which is an n-ary 

fuzzy relation over ΔD, and L=CV, ≼ is a certainty 

lattice. For simplicity we assume arity 1. 

Similarly, as in SROIQ(D) and f-SROIQ(D)[9-10], 

L-SROIQ(D) assumes three alphabets of symbols, for 

concepts, roles and individuals. 

Let n, m be natural numbers (n≥0, m>0) and 

iCV. The concepts (denoted C or D) of L-SROIQ(D) 

can be built inductively from atomic concepts (A), top 

concept ⊤, bottom concept ⊥, named individuals (oi), 

abstract roles (R), concrete roles (T), simple roles (S, 

which will be defined below), and fuzzy concrete 

predicates (d) as: 

C, D⊤| ⊥| A| C| C⊓D| C⊔D| R.C| R.C| 

T.d| T.d| {1/o1, 2/o2,…, m/om}|≥m S.C|≤n S.C|

≥m T.d|≤n T.d| S.Self| [C≽]| [C≼]. 

The abstract roles (denoted R) of L-SROIQ(D) 

can be built inductively according to the following 

syntax rule: 

R  RA| R| U| [R≽]. 

Concrete roles are denoted T and cannot be 

complex. 

Abstract individuals are denoted a, bΔI, and 

concrete individuals are denoted vΔD. 

Note that we will not allow modified concepts 

and modified roles in our L-SROIQ(D), since the 

definition of the modifier under lattices is unclear at 

present. However, indeed, this is definitely a point that 

has to be addressed in forthcoming works. 

In the rest of the paper, we will assume ⋈{≽, ≻, 

≼, ≺}, , , T, f, t. The symmetric ⋈ and the 

negation ⋈ of an operator ⋈ are defined as in table 1: 

Table 1  The definition of ⋈、⋈、⋈ 

⋈ ⋈ ⋈ 

≽ 

≻ 

≼ 

≺ 

≼ 

≺ 

≽ 

≻ 

≺ 

≼ 

≻ 

≽ 

An L-SROIQ(D) knowledge base KB comprises a 

fuzzy ABox (AB), a fuzzy TBox (TB) and a fuzzy 

RBox (RB). 

A fuzzy ABox (AB) consists of a finite set of 

fuzzy assertions. A fuzzy assertion can be an inequality 

assertion ab, an equality assertion a=b or a 

constraint on the certainty value of a concept or role 

assertion, namely, an expression of the form  ≽ , 
 ≻ ,  ≼  or  ≺ , where  is of the form 

a:C , (a, b):R, (a, b):R, (a, v):T or (a, v):T. 

A fuzzy TBox (TB) consists of fuzzy GCIs, which 

constrain the certainty value of a GCI, i.e., they are 

expressions of the form C⊑D ≽  or C⊑D ≻ . 
A fuzzy RBox (RB) consists of a finite set of role 

axioms, which can be fuzzy RIAs w⊑R ≽ , w⊑R 

≻  for a role chain w=R1, R2,…, Rn, or T1⊑T2 ≽ , 
T1⊑T2 ≻ , or any other of the role axioms from the 

crisp case: transitive role axioms trans(R), disjoint role 

axioms dis(S1, S2), dis(T1, T2), reflexive role axioms 

ref(R), irreflexive role axioms irr(S), symmetric role 

axioms sym(R) or asymmetric role axioms asy(S). 

We are ready now to formally define simple roles. 

Simple roles are defined as in the crisp SROIQ(D) 

and the fuzzy f-SROIQ(D)[9-10], 1) RA is simple if it 

does not occur on the right side of a RIA, 2) R is 

simple if R is, 3) if R occurs on the right side of a RIA, 

R is simple if, for each w⊑R ⊲ , w=S for a simple 

role S. 

Note that concrete roles are always simple. 

A fuzzy axiom is positive (denoted  ⊲) if it is 

of the form  ≽  or  ≻ , and negative (denoted 

 ⊳ ) if it is of the form  ≼  or  ≺ .  =  
is equivalent to the pair of axioms  ≽  and  ≼ . 
If nothing is specified we assume that a fuzzy axiom is 

true with degree t, so we can use the abbreviation:   

 ≽ t. 
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As in the f-SROIQ(D) DL[9-10], negative fuzzy 

GCIs or RIAs are not allowed in L-SROIQ(D), 

because they correspond to negated GCIs and RIAs 

respectively, which are not part of crisp SROIQ(D). 

Now we will introduce some definitions which 

will be useful to impose some limitations in the 

expressivity of the language. 

A strict partial order ≺ on a set S is an irreflexive 

and transitive relation on S. A strict partial order ≺ on 

the set of roles is called a regular order if it also 

satisfies R1≺R2  R2
≺R1, for all roles R1 and R2. 

A RIA w⊑R ⊲ is ≺regular if R is atomic and: 

1) w=RR, or 2) w=R, or 3) w=S1, S2,…, Sn and Si≺R 

for all i=1, 2,…, n, or 4) w=RS1, S2,…, Sn and Si≺R for 

all i=1, 2,…, n, or 5) w=S1, S2,…, SnR and Si≺R for all 

i=1, 2,…, n. 

As in the crisp SROIQ(D) and the fuzzy 

f-SROIQ(D)[9-10], there are some restrictions in the use 

of roles, in order to guarantee the decidability of the 

logic. 

Firstly, some concept constructors require simple 

roles: non-concrete qualified number restrictions and 

local reflexivity. Some role axioms also require simple 

roles: disjoint, irreflexive and asymmetric role axioms. 

Role axioms cannot contain the universal role U. 

Finally, every RIA should be ≺regular for a given 

regular order ≺. 

Let us now turn to the semantics of L-SROIQ(D). 

For a certainty lattice L=CV, ≼, an 

L-interpretation I with respect to a fuzzy concrete 

domain D is a pair (ΔI, I) consisting of a non empty set 

ΔI disjoint with ΔD and a fuzzy interpretation function 

I mapping: 

1) Every abstract individual a onto an element aI 

of ΔI. 

2) Every concrete individual v onto an element vD 

of ΔD. 

3) Every concept C onto a function CI: ΔI  CV. 

4) Every abstract role R onto a function RI: ΔIΔI 

 CV. 

5) Every concrete role T onto a function TI: ΔIΔD 

 CV. 

6) Every n-ary concrete fuzzy predicate d onto the 

fuzzy relation dD: ΔD
n  CV. 

The complete set of semantics of L-SROIQ(D)- 

concepts and L-SROIQ(D)-roles is depicted as 

follows: 

1) ⊤I(a)=t; 

2) ⊥I(a)=f; 

3) (C⊓D)I(a)=CI(a)DI(a); 

4) (C⊔D)I(a)=CI(a)DI(a); 

5) (C)I(a)=CI(a); 
6) (R.C)I(a)=

' Id 
 {RI(a, d)CI(d)}; 

7) (R.C)I(a)=
' Id 

 {RI(a, d)CI(d)}; 

8) (T.d)I(a)=
Dv  {TI(a, v)dD(v)}; 

9) (T.d)I(a)=
Dv  {TI(a, v)dD(v)}; 

10) ({1/o1, 2/o1,…, m/om})I(a)= I
iodi 


|

i; 

11) (≥m S.C)I(a)=
1 2

1 2

, , ,
|{ , , , }|

I
m

m

d d d
d d d m








{ m
i 1 {SI(a, 

di)CI(di)}}; 
12) ( ≤ n S.C)I(a) =(( ≥ n+1 S.C))I(a)= 

1 2 1

1 2 1

, , ,
|{ , , , }| 1

I
n

n

d d d
d d d n





 





{ 1
1

n

i {SI(a, di)CI(di)}}; 

13) (≥ m T.d)I(a)=
1 2 D

1 2

, , ,
|{ , , , }|

m

m

v v v
v v v m




 


{ m
i 1 {TI(a, 

vi)dD(vi)}}; 
14) ( ≤ n T.d)I(a) =(( ≥ n+1 T.d))I(a)= 

1 2 1 D

1 2 1

, , ,
|{ , , , }| 1

n

n

v v v
v v v n





 

 


{ 1
1

n

i {TI(a, vi)dD(vi)}}; 

15) (S.Self)I(a)=SI(a, a); 

16) ([C≽])I(a)=t if CI(a)≽, f otherwise; 

17) ([C≼])I(a)=t if CI(a)≼, f otherwise; 

18) (R)I(a, b)=RI(b, a); 

19) UI(a, b)=t; 

20) ([R≽])I(a, b)=t if RI(a, b)≽, f otherwise. 

Obviously, CI denotes the membership function of 

the fuzzy concept C w.r.t. the L-interpretation I. CI(a) 

gives us the degree of certainty of being the individual 

a an element of the fuzzy concept C under I. As in the 

crisp SROIQ(D) and the fuzzy f-SROIQ(D)[9-10], we do 

not impose Unique Name Assumption, that is, two 

individual names (or nominals) might refer to the same 

individual. 

The L-interpretation is extended to fuzzy axioms 

(or assertions) as follows: 

1) (a:C)I=CI(aI); 

2) ((a, b):R)I=RI(aI, bI); 

3) ((a, b):R)I=RI(aI, bI); 

4) ((a, v):T)I=TI(aI, vD); 
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5) ((a, v):T)I=TI(aI, vD); 

6) (C⊑D)I= Ia 
 {CI(d)DI(a)}; 

7) (R1, R1,…, Rn⊑R)I=
1 2 1, , , I

nd d d  



{(R1

I(d1, 

d2))…(Rn
I(dn, dn+1))RI(d1, dn+1)}; 

8) (T1⊑T2)
I=

D,Ia v  
 {T1

I(a, v)T2
I(a, v)}. 

An L-interpretation I=(ΔI, I) satisfies (is a model 

of, denoted I⊨): 

1) a:C ⋈ iff (a:C)I⋈; 
2) (a, b):R ⋈ iff ((a, b):R)I⋈; 
3) (a, b):R ⋈ iff ((a, b):R)I⋈; 
4) (a, v):T ⋈ iff ((a, v):T)I⋈; 
5) (a, v):T ⋈ iff ((a, v):T)I⋈; 
6) ab iff aIbI; 

7) a=b iff aI=bI; 

8) C⊑D ⊲ iff (C⊑D)I⊲; 
9) R1, R2,…, Rn⊑R ⊲ iff (R1, R2,…, Rn⊑R)I⊲; 
10) T1⊑T2 ⊲ iff (T1⊑T2)

I⊲; 
11) trans(R) iff a, cΔI, RI(a, c)≽ Ib 

 {RI(a, 

b)RI(b, c)}; 

12) dis(S1, S2) iff a, bΔI, S1
I(a, b)=f or S2

I(a, 

b)=f; 

13) dis(T1, T2) iff aΔI, vΔD, T1
I(a, v)=f or 

T2
I(a, v)=f; 

14) ref(R) iff aΔI, RI(a, a)=t; 

15) irr(S) iff aΔI, SI(a, a)=f; 

16) sym(R) iff a, bΔI, RI(a, b)=RI(b, a); 

17) asy(S) iff a, bΔI, if SI(a, b)≻f then SI(b, 

a)=f; 

Now, we will define the reasoning problems of 

the L-SROIQ(D) DL. 

We will say that two fuzzy concepts C and D are 

said to be equivalent (denoted by CD) when CI=DI 

for all L-interpretation I. Two fuzzy assertions 1 and 

2 are said to be equivalent (denoted by 12) iff they 

are satisfied by the same set of L-interpretations. 

An L-interpretation I satisfies an L-SROIQ(D) 

knowledge base KB=AB, TB, RB (resp., an ABox 

AB, a TBox TB, an RBox RB) if it satisfies each 

element in KB (resp., AB, TB, RB); in this case, we 

say that I is a model of KB (resp., AB, TB, RB). An 

L-SROIQ(D) knowledge base KB is satisfiable 

(unsatisfiable) iff there exists (does not exist) an 

L-interpretation I which satisfies all elements in KB. 

An L-SROIQ(D)-concept C is satisfiable (unsatisfiable) 

w.r.t. an RBox RB and a TBox TB (resp., a knowledge 

base KB) iff there exists (does not exist) some model I 

of RB and TB (resp., KB) for which there is some 

aΔI such that CI(a)=, and f. In this case, C is 

called -satisfiable w.r.t. RB and TB (resp., KB). Let C 

and D be two L-SROIQ(D)-concepts. We say that 

C⊑D ⊲ w.r.t. RB and TB if for every model I of RB 

and TB it holds that (C⊑D)I⊲. Furthermore, an 

L-SROIQ(D) ABox AB is consistent w.r.t. RB and TB 

if there exists a model I of RB and TB that is also a 

model of AB. Moreover, given a fuzzy concept axiom 

or a fuzzy assertion {C⊑D ⊲,  ⋈)}, where 

 is of the form a:C , (a, b):R, (a, b):R, (a, v):T or (a, 

v):T, an L-SROIQ(D) knowledge base KB entails , 

written KB⊨, iff all models of KB also satisfy . 

Finally, given a fuzzy knowledge base KB and an 

assertion , it is interest to compute ’s best lower and 

upper certainty-value bounds. We define the greatest 

lower bound of  w.r.t. KB (denoted by glb(KB, )) to 

be {| KB⊨≽}, where =f. Similarly, we 

define the least upper bound of  w.r.t. KB (denoted by 

lub(KB, )) to be {| KB⊨≼}, where =t. 

Determing the glb and lub is called the Best 

Certainty-Value Bound (BCVB) problem. 

In the rest of the paper we will only consider 

fuzzy knowledge base KB satisfiability, since (as in the 

crisp case and the fuzzy case) many other reasoning 

problems can be reduced to this problem[9-10,16-17,24]. 

As in the f-SROIQ(D) DL[9-10], in order to manage 

correctly infima and superma in the reasoning, we also 

need to define the notion of witnessed interpretations. 

An L-interpretation I is witnessed iff it verifies: 

1) for all aΔI, there is bΔI such that 

(R.C)I(a)=RI(a, b)CI(b), and 

2) for all aΔI, there is vΔD such that 

(T.d)I(a)=TI(a, v)dD(v), and 

3) for all aΔI, there is bΔI such that 

(R.C)I(a)=RI(a, b)CI(b), and 

4) for all aΔI, there is vΔD such that (T.d)I(a) 

=TI(a, b)dD(v), and 

5) there is aΔI such that (C⊑D)I=CI(a)DI(a), 

and 

6) there are a1, a2,…, an+1Δ
I such that (R1, R2, …, 
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Rn⊑R)I=(R1
I(a1, a2))…(RI(an, an+1)) RI(a1, 

an+1), and 

7) there are aΔI, vΔD such that (T1⊑T2)
I= 

(T1
I(a, v))T2

I(a, v), and 

8) if I⊨trans(R), for all a, cΔI, there is bΔI such 
that 

' Ib 
 {RI(a, b)RI(b, c)}=RI(a, b) RI(b, c). 

Now we shortly discuss the fuzzy nominals of our 

L-SROIQ(D). 

In fuzzy DL literature, there are proposals for 

crisp nominals[18,32] and fuzzy nomimals[4,9-10,33]. In the 

current paper we use fuzzy nomimals. Moreover, the 

semantics of the fuzzy nomimals are based on certainty 

lattices. Recall that it are defined as: 
({1/o1, 2/o2,…, m/om})I(a)= I

iodi 


|
i 

Obviously, the semantics of the fuzzy nomimals 

presented in this paper is an extension of that of fuzzy 

nomimals[4,9-10,33]. Since we are not imposing unique 

name assumption, it is possible that a=(oi)
I for more 

than one oi. This is the reason why we need to compute 

the supremum over the i associated to these named 

individuals oi. And, of course, if i{1, 2,…, m}, 

d(oi)
I, then ({1/o1, 2/o2,…, m/om})I(d)==f. 

Finally, we discuss the fuzzy concrete domains of 

our L-SROIQ(D). 

Let us recall the notion of the fuzzy concrete 

domains in the f-SROIQ(D) DL[9-10] firstly. A fuzzy 

concrete domain D is a pair ΔD, D, where D is a 

concrete interpretation domain, D is a set of fuzzy 

concrete predicates d with an arity n and an 

interpretation dD: ΔD
n  [0, 1], which is an n-ary fuzzy 

relation over ΔD
[18,34]. 

On the other hand, concerning non crisp fuzzy 

domain predicates, we recall that in fuzzy set theory 

and practice there are many membership functions for 

fuzzy sets membership specification. However, the 

triangular, the trapezoidal, the left shoulder function 

and the right shoulder function are simple, yet are most 

frequently used to specify membership degrees (see 

Ref. [9-10,18] for more details). For example, Ref. [9] 

and Ref. [10] restrict them to the trapezoidal 

membership function trap: ℚ [k1, k2]  [0, 1] which 

is defined as follows: 

1) 
1 2,trapk k (x; q1, q2, q3, q4)=(xq1)/(q2q1), if 

x[q1, q2]; 
2) 

1 2,trapk k (x; q1, q2, q3, q4)=1, if x[q2, q3]; 

3) 
1 2,trapk k (x; q1, q2, q3, q4)=(q4x)/(q4q3), if 

x[q3, q4]; 
4) 

1 2,trapk k (x; q1, q2, q3, q4)=0, if x[k1, q1] [q4, 

k2]. 

In fact, the trapezoidal membership function can 

be used to represent other popular membership 

functions such as the triangular trik1,k2
(x; q1, q2, q3), the 

left shoulder function Lk1,k2
(x; q1, q2) and the right 

shoulder function R k1,k2
(x; q1, q2) as trap k1,k2

(x; q1, q2, q2, 

q3), trap k1,k2
(x; k1, k1, q1, q2) and trap k1,k2

(x; q1, q2, k2, k2) 

respectively. 

Now, in our L-SROIQ(D), a fuzzy concrete 

domain D is a pair ΔD, D, where ΔD is a concrete 

interpretation domain, D is a set of fuzzy concrete 

predicates d with an arity n and an interpretation dD: 

ΔD
n  CV, which is an n-ary fuzzy relation over ΔD, 

L=CV, ≼ be a certainty lattice. Obviously, we need 

to extend the interpretation dD: ΔD
n  [0, 1] of 

f-SROIQ(D) to dD: ΔD
n  CV of L-SROIQ(D). That is, 

the domain of the interpretation dD of L-SROIQ(D) is 

the set of certainty values CV (not the real unit interval 

[0, 1]). 

In order to define the fuzzy concrete domains and 

provide reasoning preserving procedure for L-SROIQ 

(D), in what follows, we assume the lattice L is a linear 

order. 

If the set of certainty values CV is continuous and 

infinite (e.g. the lattice over the real unit interval [0, 1] 

with order ≤), we may define a similar trapezoidal 

membership function trap k1,k2
(x; q1, q2, q3, q4) as in Fig. 

2a. If the set of certainty values CV is discrete and 

finite (e.g. L{0,1}, Belnap’s FOUR and L4 (see Section 

2.2), or the certainty lattice L=CV, ≼ defined in 

Example 1), we may define the membership function  

f k1,k2
 (x; q1, q2,…, qk1, qk) as in Fig. 2b. 

In the rest of this work we will restrict ourselves 

to the discrete membership function fk1,k2
(x; q1, q2,…, 

qk1, qk). Hence, we assume a unique fuzzy predicate 

d=f k1,k2
(q1, q2,…, qk1, qk). 
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a. Continuous function                                       b. Discrete function 
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Fig. 2  Membership functions defined in [k1, k2] 

2.2  Logical properties 

It can be easily shown that L-SROIQ(D) is a 

sound extension of f-SROIQ(D), in the sense that 

L-interpretations coincide with fuzzy interpretations if 

we restrict the degree of certainty to the lattice over the 

real unit interval [0, 1] with order≤. In the following, 

we discuss some properties of our DL L-SROIQ(D). 

The first ones are straightforward: ⊤⊥, ⊥⊤, 

C⊓⊤C, C⊔⊥C, C⊓⊥⊥, C⊔⊤⊤, R.⊥⊥ and 

R.⊤⊤, where C is a fuzzy, R is an abstract fuzzy 

role. 

The definitions of the operators over lattices (see 

Section 1.2) imply that the following properties hold: 

Proposition 1  Let C, C1, C2, C3 and D be five 

L-SROIQ(D) concepts, R L-SROIQ(D) abstract role 

and S simple L-SROIQ(D) abstract role. Then 

1) CC, C⊓CC, C⊔CC; 

2) (C⊓D)C⊔D, (C⊔D)C⊓D; 

3) (R.C)R.C, (R.C)R.C; 

4) (≤n S.C)((≥n+1 S.C)), (≥m S.C)((≤

m1 S.C)). 

Proof This is easily obtained from the definitions 

of semantics of L-SROIQ(D) concepts (see Section 

1.1).  

Please note that the properties 1)～3) are satisfied 

in L-SHIN[24]. From Proposition 1 we know that these 

properties are also satisfied in L-SROIQ(D). On the 

other hand, From Proposition 1 we also know that it 

would be possible to transform fuzzy concept 

expressions into a semantically equivalent Negation 

Normal Form (NNF), which is obtained by using the 

equivalences of Proposition 1 to push negation in front 

of atomic concepts, fuzzy nominals and local 

reflexivity concept (S.Self). 

Proposition 2  For a certainty lattice L=CV, ≼, 
CV, ⊲{≽, ≻} and ⊳{≼, ≺}, the following 

properties are verified: 

1) a:C ⊲a:C ⊲; 
2) a:C ⊳a:C ⊳; 
3) (a, b):R ⊲(a, b):R ⊲; 
4) (a, b):R ⊳(a, b):R ⊳; 
5) (a, v):T ⊲(a, v):T ⊲; 
6) (a, v):T ⊳(a, v):T ⊳. 
Proof  To be omitted. 

Obviously, we can assume that negated role 

assertions of the form (a, b):R ⊲ or (a, b):R ⊳ 
do not appear in the fuzzy knowledge base KB (and 

similarly for concrete roles) due to the equivalences 

3)～6) of Proposition 2. 

Similarly as in L-SHIN[24], we have the following 

properties about entailment in our fuzzy DL 

L-SROIQ(D). 

KB⊨≽ iff glb(KB, )≽, and similarly 

KB⊨≼ iff lub(KB, )≼. Furthermore, from 

a:C≼ iff a:C≽ (see 1) of Proposition 2), it 

follows lub(KB, a:C)=glb(KB, a:C). From (a, 

b):R≼ iff (a, b):R≽ (see 3) of Proposition 2), 

it follows lub(KB, (a, b):R)=glb(KB, (a, b):R). 

Similarly, from (a, v):T≼ iff (a, v):T≽ (see 5) 

of Proposition 2), it follows lub(KB, (a, 

v):T)=glb(KB, (a, v):T). Therefore, lub can be 

determined through glb and vice versa in 

L-SROIQ(D). 

L-SROIQ(D) allows some sort of modus ponens 

over concepts and roles, even with the new semantics 

of fuzzy GCIs: 

Proposition 3  For a linear ordered certainty 

lattice L=CV, ≼, , CV, ⊲{≽, ≻},  +⊲  
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(where +≽ = ≻, +≻ = ≽), the following properties are 

verified: 

1) a:C ⊲ and C⊑D ⊲ imply a:D ⊲. 
2) (a, b):R ⊲ and R⊑R ⊲ imply (a, b):R 

⊲. 
3) (a, b):R ⊲ and a:R.C ⊲ imply b:C 

⊲. 
Proof  To be omitted.  

Finally, we will provide the property about 

soundness of the semantics. 

Our fuzzy semantics based on certainty lattices is 

sound w.r.t. crisp semantics. In fact, let KB=AB, TB, 

RB be an L-SROIQ(D) knowledge base. Let us 

consider the following transformation #() of fuzzy 

assertions (resp. fuzzy axioms) into assertions (resp. 

axioms), where #() takes the “crisp” assertional (resp. 

terminological) part of a fuzzy assertion (resp. fuzzy 

axiom): 

#(⊲)  ; 

#(a:C⊳)  a:C; 

#((a, b):R⊳)  (a, b):R; 

#((a, v):T⊳)  (a, v):T; 

#((a, b):R⊳)  (a, b):R; 

#((a, v):T⊳)  (a, v):T; 

#(C⊑D ⊲)  C⊑D; 

#(w⊑R ⊲)  w⊑R. 

We extend #() to fuzzy knowledge base KB=AB, 

TB, RB as follows: #(KB)={#()| AB}  {#()| 

TB} {#()| RB}. It can be shown that 

Proposition 4  For a certainty lattice L=CV, ≼, 
CV, ⊲{≽, ≻} and ⊳{≼, ≺}, let KB=AB, TB, 

RB be a fuzzy knowledge base and let  be a fuzzy 

assertion (or a fuzzy axiom), i.e.,  is an expression of 

the form ⊲,⊳, C⊑D ⊲ or w⊑R ⊲, 
where  is of the form a:C, (a, b):R, (a, b):R, (a, v):T 

or (a, v):T. If KB⊨, then #(KB)⊨#(). 

The proof is similar to the proof of Theorem 3 of 

Ref. [24]. 

3  A crisp representation for  
L-SROIQ(D) 

In this section we show how to reduce an 

L-SROIQ(D) fuzzy knowledge base KB into a crisp 

SROIQ(D) knowledge base. The procedure preserves 

reasoning, so existing SROIQ(D) reasoners such as 

Pellet[35], FaCT++[36] and RACER[37] could be applied 

to the resulting knowledge base. 

The basic idea is to create some new crisp 

concepts and roles, representing the -cuts of the fuzzy 

concepts and relations, and to rely on them. Next, 

some new axioms are added to preserve their 

semantics and finally every axiom in the ABox, the 

TBox and the RBox is represented, independently from 

other axioms, using these new crisp elements. In fact, 

the reduction presented in this section is an extension 

of that of f-SROIQ(D) under Zadeh semantics and 

Gödel semantics[4,9-10] and L-ALC under linear ordered 

lattices[20]. 

In Ref. [4,9-10,33,38] it has been shown that 

reasoning in fuzzy DLs can be reduced to reasoning in 

classical DLs and, thus, already existing reasoners can 

be applied directly. The first effort in this direction is 

due to Straccia, who showed a reasoning preserving 

procedure for fuzzy ALCH[38]. Recently, Ref. [4,10] 

provided a crisp representation for the fuzzy DLs 

f-SROIQ and f-SROIQ(D) respectively. It needs to be 

noted that in the rest of this paper we will restrict 

ourselves to the linear ordered lattices. 

3.1  Adding new elements 

Let AC be the set of atomic concepts, RA the set 

of atomic abstract roles and TC the set of concrete 

roles in a fuzzy knowledge base KB=AB, TB, RB. 
Ref. [20] showed that the set of the degrees of certainty, 

which must be considered for any reasoning task in 

L-ALC, is defined as follows. 

Consider an L-ALC knowledge base KB. Define 

XKB={f, t}  {| ⊲KB}  {| ⊳KB}, 

from which we define NKB=XKB  {| XKB}. If 

there is  T such that  = , then we add  to XKB. 

This also holds in L-SROIQ(D). Without loss of 

generality, it can be assumed that NKB={1, 2,…, KB| |N
 } 

and i≺i+1, for 1≤i≤|NKB|1. It is easy to see that 

1=f and KB| |N
 =t. 

For each , NKB with f and t, for each 

AAC, two new atomic concepts A≽, A≻ are 

introduced. A≽ represents the crisp set of individuals 

which are instance of A with degree of certainty higher 

or equal than , i.e., the -cut of A. A≻ is defined in a 
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similar way. 

Similarly, for each RARA and for each TTC 

two new atomic abstract roles RA≽, RA≻ and two new 

concrete roles T≽, T≻ are introduced. 

The atomic elements A≻t, RA≻t, T≻t, A≽f, RA≽f and 

T≽f are not considered because they not necessary, due 

to the restrictions on the allowed degree of certainty of 

the axioms in the fuzzy knowledge base KB. 

The semantics of these newly introduced atomic 

concepts and roles is preserved by some terminological 

and role axioms. For each 1≤i≤ |NKB|1, 2≤j≤

|NKB|1 and for each AAC, TBX(NKB) is the smallest 

TBox containing these two axioms: 

A≽i+1
⊑A≻i and A≻j⊑A≽j.  

Similarly, for each RARA, RAX(NKB) is the 

smallest RBox containing the following two axioms: 

RA≽i+1
⊑RA≻i and RA≻i⊑RA≽i. 

And for each TTC, RCX(NKB) is the smallest 

RBox containing the following two axioms: 

T≽i+1
⊑T≻i and T≻i⊑T≽i. 

Previous work[20] used two more atomic concepts 

A≼, A≺ and the following additional axioms (for 2≤k

≤|NKB|): 

A≺k⊑A≼k, A≼i⊑A≺i+1
, A≽k⊓A≺k⊑⊥, A≻i⊓ 

A≼i ⊑⊥, ⊤⊑A≽k⊔A≺k, ⊤⊑A≻i⊔A≼i. 

In contract to this, we use A≻k rather than A≼k 

and A≽k instead of A≺k. This way is the same as that 

of f-SROIQ and f-SROIQ(D) proposed in Ref. 

[4,9-10,39]. The six axioms above follow immediately 

from the semantics of the crisp concepts as Proposition 

5 shows: 

Proposition 5  If A≽i+1
⊑A≻i and A≻k⊑A≽k 

hold, then the following axioms are verified: 

1) A≽k⊑A≻k,  2) A≻i⊑A≽i+1
,  

3) A≽k⊓A≽k⊑⊥,  4) A≻i⊓A≻i⊑⊥,  

5) ⊤⊑A≽k⊔A≽k,  6) ⊤⊑A≻i⊔A≻i. 

Proof  To be omitted.  

Obviously, Proposition 5 is similar to Proposition 

2 of Ref. [10]. The aim is to optimize the size of 

T(NKB). 

Similarly as f-SROIQ(D)[9-10], we do not 

introduce the axiom A≻f⊑A≽f, since A≽f is equivalent to 

⊤ the axiom trivially holds. On the other hand, in the 

case of roles, we use RA⊳ instead of RA⊳, as we 

will see in the next subsection. This idea is essential in 

order to represent some of role constructors of 

SROIQ(D) (negated role assertions and self reflexivity 

concepts). Actually, it is not possible to use a role of 

the form RA≼k rather than RA≻k and RA≺k instead of 

RA≽k. The reason is that the logic does not make 

possible to express the corresponding version of the 

axioms 3), 4), 5) and 6) of Proposition 5, which would 

be necessary to guarantee the correctness of the 

reduction, because the role conjunction and the bottom 

role are not allowed, and the universal role cannot 

appear in RIAs. 

3.2  Mapping fuzzy concepts, roles and axioms 

Fuzzy concept and role expressions are reduced 

using mapping , as shown in Tables 2 and 3 

respectively. Concrete predicates are reduced as in 

Table 4. 

Table 2  Mapping of fuzzy concept expressions 

x y (x, y) 

⊤ 
⊤

⊲ 
⊳

⊤ 

⊥ 

⊥ 

⊥
⊲ 
⊳

⊥ 

⊤ 

A 
A 

⊲ 
⊳

A⊲ 

A⊳ 

C ⋈ (C, ⋈) 
C⊓D 

C⊓D 

⊲ 
⊳

(C, ⊲)⊓(D, ⊲) 
(C, ⊳)⊔(D, ⊳) 

C⊔D 

C⊔D 

⊲ 
⊳

(C, ⊲)⊔(D, ⊲) 
(C, ⊳)⊓(D, ⊳) 

R.C 
R.C 

⊲ 
⊳

(R, ⊲).(C, ⊲) 
(R, ⊳).(C, ⊳) 

T.d 
T.d 

⊲ 
⊳

(T, ⊲).(d, ⊲) 
(T, ⊳).(d, ⊳) 

R.C 
R.C 

{≽, ≻} 
⊳

(R, {≻, ≽}).(C, {≽, ≻}) 
(R, ⊳).(C, ⊳) 

T.d 
T.d 

{≽, ≻} 
⊳

(T, {≻, ≽}).(d, {≽, ≻}) 
(T, ⊳).(d, ⊳) 

{1/o1, 2/o2,…, 
m/om} ⋈ {oi| i⋈, 1≤i≤m} 

≥m S.C 
≥m S.C 

⊲ 
⊳

≥m (S, ⊲).(C, ⊲) 
≤m1 (S, ⊳).(C, ⊳) 

≥m T.d 
≥m T.d 

⊲ 
⊳

≥m (T, ⊲).(d, ⊲) 
≤m1 (T, ⊳).(d, ⊳) 

≤n S.C 
≤n S.C 

{≽, ≻} 
⊳

≤n (S, {≻, ≽}).(C, {≻, ≽}) 
≥n+1 (S, ⊳).(C, ⊳) 

≤n T.d 
≤n T.d 

{≽, ≻} 
⊳

≤n (T, {≻, ≽}).(d, {≻, ≽}) 
≥n+1 (T, ⊳).(d, ⊳) 

S.Self 
S.Self 

⊲ 
⊳

(S, ⊲).Self 

(S, ⊳).Self 

[C≽] 

[C≽] 

⊲ 
⊳

(C, ≽) 

(C, ≺) 

[C≼] 

[C≼] 

⊲ 
⊳

(C, ≼) 

(C, ≻) 
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Table 3  Mapping of fuzzy role expressions 

x y (x, y) 

RA 
RA 

⊲ 
⊳ 

RA⊲ 

RA⊳ 

T 
T 

⊲ 
⊳ 

T⊲ 

T⊳ 
R ⋈ (R, ⋈) 
U 
U 

⊲ 
⊳ 

U 
U 

[R≽] 

[R≽] 

⊲ 
⊳ 

(R, ≽) 

(R, ≺) 

R 
R 

⊲ 
⊳ 

(R, ≼f) 

(R, ≻f) 

T 
T 

⊲ 
⊳ 

(T, ≼f) 

(T, ≻f) 

Table 4  Mapping of fuzzy concrete predicates 

x y (x, y) 

d ≽ real[q≽, q≽+) 
d ≻ real[q≻, q≻+) 
d ≼ union-real[k1, q≼+, q≼, k2] 
d ≺ union-real[k1, q≺+, q≺, k2]  

q≽, q≽+, q≻, q≻+, q≼+, q≼, q≺+ and q≺ 

are defined as follows. 

Without loss of generality, it can be assumed that 

NKB={1, 2,…, KB| |N
 }={1, 2,…, e, , f,…, g, , 

h,…, |NKB|} and i≺i+1, for 1≤i≤|NKB|1. 

q≽=min{x| fk1,k2
(x; q1, q2,…, qk1, qk)=}; 

q≽+=min{x| fk1,k2
(x; q1, q2,…, qk1, qk)=e  y, y

≤x  fk1,k2
 (y; q1, q2,…, qk1, qk)=t}; 

q≻=min{x| fk1,k2
(x; q1, q2,…, qk1, qk)=h}; 

q≻+=min{x| fk1,k2
(x; q1, q2,…, qk1, qk)=  y, y≤

x  fk1,k2
(y; q1, q2,…, qk1, qk)=t}; 

q≼+=min{x| fk1,k2
(x; q1, q2,…, qk1, qk)=h}; 

q≼=min{x| fk1,k2
(x; q1, q2,…, qk1, qk)=  y, y≤

x  fk1,k2
(y; q1, q2,…, qk1, qk)=t}; 

q≺+=min{x| fk1,k2
(x; q1, q2,…, qk1, qk)=}; 

q≺=min{x| fk1,k2
(x; q1, q2,…, qk1, qk)=e  y, y

≤x  fk1,k2
(y; q1, q2,…, qk1, qk)=t}. 

Given a fuzzy concept C, (C, ≽) is the -cut of 

C, a crisp set containing all the elements which belong 

to C with a degree of certainty greater or equal than . 

The other cases (C, ⋈) are similar. 

Given a fuzzy role R, (R, ≽) is a crisp set 

containing all the pair of elements which are related 

through R with a degree of certainty greater or equal 

than . The other cases (R, ⋈) and (T, ⋈) are 

similar. 

Finally, due to the restrictions in the definition of 

the fuzzy knowledge base KB, some expressions 

cannot appear during the process: 

1) (R, ⊳), (U, ⊳) and (T, ⊳) can only 

appear in a (crisp) negated role assertion. 

2) (A, ≽f), (A, ≻t), (A, ≼t) and (A, ≺f) 

cannot appear due to the existing restrictions on the 

degree of certainty of the axioms in the fuzzy 

knowledge base KB. The same also holds for ⊤, ⊥, RA, 

T and U. 

Axioms are reduced as in Table 5, where k() 
maps a fuzzy axiom  in L-SROIQ(D) into a set of 

crisp axioms in SROIQ(D). We note k(AB) (resp. 

k(TB), k(RB)) the union of the reductions of all the 

fuzzy axioms in AB (resp. TB, RB). 

Table 5  Reduction of the axioms 

 k() 
a:C ⋈ {a:(C, ⋈)} 

(a, b):R ⋈ {(a, b):(R, ⋈)} 

(a, v):T ⋈ {(a, v):(T, ⋈)} 

(a, b):R ⋈ {(a, b):(R, ⋈)} 

(a, v):T ⋈ {(a, v):(T, ⋈)} 
ab {ab} 
a=b {a=b} 

C⊑D ≽  (C, ≻)⊑(D, ≽) 

C⊑D ≻  (C, ≽)⊑(D, ≻ ) 

R1, R2,…, Rn⊑R ≽ 
 

{(R1, ≻), (R2, ≻),…, (Rm, 

≻)⊑(R, ≽)} 

R1, R2,…, Rn⊑R ≻ 
 

{(R1, ≽), (R1, ≽),…, (Rm, 

≽)⊑(R, ≻)} 

T1⊑T2 ≽  {(T1, ≻)⊑(T2, ≽)} 

T1⊑T2 ≻  {(T1, ≽)⊑(T2, ≻)} 

trans(R) 
KB \{f}N

 {trans((R, ≽))}   

KB
\{f}N  {trans((R, ≻))} 

dis(S1, S2) {dis((S1, ≻f), (S2, ≻f))} 
dis(T1, T2) {dis((T1, ≻f), (T2, ≻f))} 

ref(R) {ref((R, ≽t))} 
irr(S) {irr((S, ≻f))} 

sym(R) 
KB \{f}N

 {sym((R, ≽))}   

KB
\{f}N  {sym((R, ≻))} 

asy(S) {asy((S, ≻f))} 

Obviously, the mappings  and k defined above 

are semantic extension of the mappings  and k 

defined in Ref. [9] for f-SROIQ(D) under Zadeh 

semantics. That is, the mappings  and k defined above 

are based on linear ordered lattices, but the mappings  

and k defined in Ref. [9] are based on the real unit 

interval [0, 1]. 

3.3  Correctness of the reduction 

As in the f-SROIQ(D) DL[9-10], the reduction 
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presented in Section 3.2 preserves simplicity of the 

roles and regularity of the RIAs. 

The following theorem shows that our 

L-SROIQ(D) over linear ordered lattices is decidable 

and that the reduction preserves reasoning. 

Theorem 1  The satisfiability problem in 

L-SROIQ(D) over linear ordered lattices is decidable. 

Furthermore, an linear order L-SROIQ(D) fuzzy 

knowledge base KB=AB, TB, RB is satisfiable iff its 

crisp representation k(KB)=k(AB), TBX(NKB)   

k(TB), RAX(NKB) RCX(NKB) k(RB) is satisfiable. 

Proof To be omitted.  

As in the f-SROIQ(D) DL[9-10], our procedure for 

L-SROIQ(D) also has the modularity property. That is, 

we have the following property. 

Theorem 2  Let KB be an L-SROIQ(D) fuzzy 

knowledge base involving a set of fuzzy atomic 

concepts AC, a set of atomic roles Ra and a set of 

concrete roles Rc, let NKB be the set of relevant 

certainty degrees to be considered and let  be an 

L-SROIQ(D) axiom such that: 

1) For every atomic concept A which appears in , 
AAC; 

2) For every atomic role RA which appears in , 
RARa; 

3) for every concrete role T which appears in , 
TRc; 

4) If  appears in , then NKB. 

Then, the reduction of the union of the KB and 

the axiom  is equivalent to the union of the reduction 

of KB and the reduction of : 
k(KB )=k(KB) k(). 
The proof of Theorem 2 is similar to that of 

Theorem 2 of Ref. [10].  

Regarding the complexity, obviously, the 

complexity of the reduction of our L-SROIQ(D) is the 

same as that of the f-SROIQ(D) DL[9-10]. That is, the 

resulting knowledge base is quadratic. The ABox is 

actually linear while the TBox and the RBox are both 

quadratic (see Ref. [9-10] for more details). 

4  Conclusions 

Making applications capable of coping with 

vagueness (fuzziness) and imprecision will result in the 

creation of systems and applications which will 

provide us with high quality results and answers to 

complex user defined tasks. To this extent we have 

presented a very expressive fuzzy DL L-SROIQ(D) 

based on certainty lattice theory. Concretely, our work 

presents several contributions. Firstly, we augment the 

expressivity of fuzzy DLs by allowing the definition of 

fuzzy sets by extension and by allowing fuzzy GCIs 

and fuzzy RIAs to be verified up to some degree. 

Secondly, we present a very expressive fuzzy DL over 

uncertainty lattices L-SROIQ(D). Finally, we show the 

decidability of L-SROIQ(D) by providing a reasoning 

preserving procedure to obtain a crisp representation 

for it in case of linearly ordered lattices. 
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