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Abstract In this paper we present a very expressive fuzzy description logic framework, L-SROIQ(D), based
on certainty lattices, which is a fuzzy extension of the description logic SROIQ(D) (theoretical basis of the
ontology language OWL 2). Some logical properties of L-SROIQ(D) are researched and the decidability of
L-SROIQ(D) is proved in case of linearly ordered lattices.
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The Semantic Web!" has recently attracted much
attention, both from academia and industry, and is
widely regarded as the next step in the evolution of the
World Wide Web. It aims at an extension of the current
Web by standards and technologies that help machines
to understand the information on the Web so that they
can support richer discovery, data integration,
navigation, and automation of tasks. The main ideas
behind

“meaning” to web pages, to use ontologies for a

it are to add a machine-understandable

precise definition of shared terms in web resources, to
use KR technology for automated reasoning from web
resources, and to apply cooperative agent technology

for processing the information of the Web?!. This
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vision has led to the introduction of a stack of new
generation ontology definition languages.

An ontology is defined as an explicit and formal
specification of a shared conceptualization, which
means that ontologies represent the concepts and the
relationships in a domain promoting interrelation with
other models and automatic processing. Ontologies
allow to add semantics to data, making knowledge
maintenance, information integration as well as the
reuse of components easier'”. The current standard
language for ontology creation is the Web Ontology
(OWL),  which
sublanguages of increasing expressive power: OWL
Lite, OWL DL and OWL Full. An extension of OWL is

Language comprises  three
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OWL 28,

Description Logics (DLs for short)”) are a family
of logic-based knowledge representation formalisms
that are tailored towards representing the
terminological knowledge of an application domain in
a structured and formally well-understood way. DLs
have proved to be very useful as ontology languages'®.
For example, OWL Lite, OWL DL and OWL 2 are
essentially very expressive DLs with an RDF syntax.
More specifically, OWL Lite, OWL DL and OWL 2
are nearly equivalents to the DLs SHIF(D), SHOIN(D),
and SROIQ(D), respectively'* *'',

Nevertheless, it has been widely pointed out that
and DLs

imprecise and vague

classical ontology languages are not

to deal with

knowledge, which is inherent to several real world
24,12

appropriate
domains'*'?. The rising popularity of DLs and their
use, and the need to deal with uncertainty and
vagueness, both especially in the Semantic Web, is
increasingly attracting the attention of many
researchers and practitioners towards DLs able to cope
with uncertainty and Vaguenessm. Especially, there are
many works attempted to extend the DLs using fuzzy

4,9-11,14-19
LYY e presented

set theory'"”, that is, fuzzy DLs!
based on fuzzy set theory. For a more detailed survey
on fuzzy DLs the reader is referred to Ref. [2].

The above-mentioned fuzzy DLs can only address

quantitative reasoning (by relying e.g. on [0, 1]), but

can not address qualitative uncertainty reasoning (by
relying e.g. on {false, likelyfalse, unknown, likelytrue,
true}, in increasing order)®”. In order to address
qualitative uncertainty reasoning, Ref. [20] extends
DLs allowing to express that a sentence is not just true
or false like in classical DLs, but certain to some
degree, which is taken from a certainty lattice, and
presents fuzzy description logic over lattices L-ALC.
The adopted approach is more general than the fuzzy
logic based approach!'”, as the adopted approach
subsumes the fuzzy logic based approach (just take the
lattice over the real unit interval [0, 1] with order <)
and four-valued DLs such as Ref. [21] and Ref. [22],
but is orthogonal to almost all other approaches.
Subsequently, Ref. [23] extend L-ALC and present
fuzzy description logic over lattices with number
restrictions L-ACLN. Recently, Ref. [24] consider a
fuzzy extension of SHIN based on certainty lattices,
present fuzzy description logic over lattices L-SHIN.

Obviously, we know that classical description
logics (denoted by DLs) ALC™*! ALCN!"!, SHIN!'®!
and SROIQ(D)"”), fuzzy description logics based on
fuzzy logic (denoted by f-DLs) f-ALC!"7, f~ALCN,
f-SHIN!®! and f-SROIQ(D)®'", and fuzzy description
logics over lattices (denoted by L-DLs) L-ALCP%,
L-ALCN® and  L-SHIN®Y
depicted in Fig. 1:

have relationships

A
A A A A
5 L-DLs ———-L{ALC ---- L-ALCN ---- L-SHIN . -—-->
3 i i
A~ H : H H
> i H H i
N fDLs f---fALC ---- ffALCN ---. f-SHIN ---.{-SROIQ(D) --»
DLs |---ALC ---- ALCN ---- SHIN ----SROIQ(D) ---»
o ] v
Expressive Power
Fig. 1 DLs, f-DLs and L-DLs

From Fig. 1, it is naturally known that we need a
novel fuzzy description logic L-SROIQ(D), which is
the extension of L-SHIN and f-SROIQ(D). In the
current paper, we extend the results obtained in Ref.
[24] for L-SHIN and in Ref. [9] and Ref. [10] for
f-SROIQ(D), thus creating L-SROIQ(D). In this paper
we consider a fuzzy extension of SROIQ(D) based on

certainty lattices, present the very expressive fuzzy
description logic over lattices L-SROIQ(D), and give

its syntax and semantics.
1 Preliminaries

The current section provides some background.
Section 1.1 describes SROIQ(D), the DL which stands
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behind the Web ontology language OWL 2. Section 1.2
recalls some basic notions of certainty lattices. See
especially Ref. [4,9-10,20,27] for further details and
background.
1.1 The description logic SROIQ(D)
SROIQ(D)" ' extends ALC standard DL with
transitive roles, complex role axioms, nominals,
inverse roles, qualified number restrictions, and
concrete domain.
First, we present the syntax of SROIQ(D).

A concrete domain!**>!

is a pair (4p, @p), where
Ap is a concrete interpretation domain and @p is a set
of domain predicates d with a predefined arity » and an
interpretation dpcAp". For simplicity we assume arity 1.

As usual, SROIQ(D) assumes three alphabets of
symbols, for concepts, roles, and individuals. In DLs,
complex concepts and roles can be built using different
concept and role constructors. In SROIQ(D), the
concepts (denoted C or D) and abstract roles (R) can be
built inductively from atomic concepts (4), atomic
roles (R,), top concept T, bottom concept L, named
individuals (0;), simple roles (S, which will be defined
below), universal role (U), and concrete roles (7).
SROIQ(D)-concepts  are
inductive according to the following abstract syntax:

C, D>T| L] 4] =C| CrD| cuD| 3R.C| VR.C|
AT.d| VTd| {01, 02,+, 0} | =0 S.CI<n S.C|=n T.d|<n
T.d| 3S8.Self, where n, m denote natural numbers (n=0,
m>0).

SROIQ(D)-roles  are
according to the following abstract syntax:

Concretely, composed

composed  inductive

R — R, R| U] T, where R denotes inverse role.

A Knowledge Base (KB) comprises two parts: the
intensional knowledge, i.e., general knowledge about
the application domain (a Terminological Box or TBox
(TB) and a Role Box or RBox (RB)), and the
extensional knowledge, i.e., particular knowledge
about some specific situation (an Assertional Box or
ABox (AB) with statements about individuals).

An ABox (AB) consists of a finite set of
assertions about individuals: concept assertions a:C,
abstract role assertions (a, b):R, negated abstract role
assertions (a, b):—R, concrete role assertions (a, v):T,
negated concrete role assertions (a, v):—7, inequality

assertions a=b, and equality assertions a=b.

A TBox (TB) consists of a finite set of general
concept inclusion (GCI) axioms CE=D (C is more
specific than D).

Let w be a role chain (a finite string of roles not
including the universal role U). An RBox RB consists
of a finite set of role axioms: role inclusion axioms
(RIAs) wER, transitive role axioms trans(R), disjoint
role axioms dis(S;, ), reflexive role axioms ref(R),
irreflexive role axioms irr(S), symmetric role axioms
sym(R), and asymmetric role axioms asy(S).

Now we will introduce some definitions which
will be useful for imposing some limitations in the
language. A strict partial order < on a set 4 is an
irreflexive and transitive relation on 4. A strict partial
order < on the set of roles is called a regular order if it
also satisfies R|<R, < R, <R, for all roles R; and R,.

In order to guarantee the decidability of the logic,
there are some restrictions in the use of roles. Given a
regular order <, every role axiom cannot contain U
and every RIA should be <-regular. A RIA wER is
<-regular if R is atomic and: 1) w=RR, or 2) w=R", or
3) w=S1, Sz,-, Sy and S;<R for all i=1, 2,--, n, or 4)
w=RS}, Sz,---, S, and S;<R for all =1, 2,---, n, or 5)
w=3S1, S»,***, S,R and S;<R for all i=1, 2,---, n.

Note that, in order to prove decidability of the
reasoning, roles are assumed to be simple in some
concept constructors (local reflexivity, at-least and
at-most number restrictions) and role axioms (disjoint,
irreflexive and asymmetric role axioms)””. Simple
roles are inductively defined as follows: 1) Ry is
simple if it does not occur on the right side of a RIA, 2)
R is simple if R is, 3) if R occurs on the right side of a
RIA, R is simple if, for each wER, w=S for a simple
role S.

Let us now turn to the semantics of SROIQ(D).

An interpretation / with respect to a concrete
domain D is a pair I=(4', o), where A" is a non-empty
domain of the interpretation disjoint with Ap, and o' is
an interpretation function that maps each atomic
concept 4 to a set AIQA[, each abstract atomic role Ry
to a binary relation RAIgA[xAI, each concrete role T to
a binary relation T’gAleD, each abstract individual
name a to an element a’ eAI, each concrete individual



38

Wiz, % THIHE X WeblExpressive B #1412 # 325

name v to an element vpedp, and each n-ary concrete
predicate d to a set dpcAp". The interpretations of
complex concepts and roles are shown as follows:

1) T=A, 1'=¢, (-O)=4\C, (cnDy=C'N D',
(CuDy=C'U D',

2) (3R.CY={aecd| 3bed, (a, b)eR'Abe('},
(VR.CY={aed'| Ybed, (a, b)eR'—>be(C'};

3) @AT.dy={aed| Fvedp, (a, v)eT'rvedp},
(VT.dY={aed| Yvedp, (a,v)e'—vedp};

4) {o1, 02, om}'={01', 0s',, 0,'}, (3S.Self)=
{aed| (a, a)eS"};

5) (=n S.OM'={aed| #{bed| (a, b)eS'AbeC"}

9) (R)={(b, a)ed'xA| (a, b)eR"y, U'=A"xA".

where #X denotes the cardinality of the set X.

Let o be the standard composition of relations. An
interpretation / satisfies (is a model of):

1) a:Ciff d'eC, (a, b):R iff (', b)eR’, (a, b):—R
iff (', B e R";

2) (a, v):Tiff (d', vp)e T, (a, v):—Tiff (d', vp)e T

3) a=b iff a'#b’, a=b iff a’=b’, C=D iff C'cD’, Ry,
Ry, R,ERiff R0, R)0,++, R,/ ocR’;

4) trans(R) iff (a, b)eR' and (b, ¢)eR’ imply (a,
c)eRI, Ya, b, ceAI;

5) dis(S), $b) iff S’ N Sy'=¢, ref(R) iff Vaed', (a,
a)eR’, irr(S) iff Vaed', (a, a)eS";

6) sym(R) iff (a, b)eR' implies (b, a)eR’, Va,
beAﬁ

7) asy(S) iff (a, b)eS' implies (b, a)¢S', Va, bed;

8) a knowledge base KB=(AB, TB, RB) iff it
satisfies each element in AB, TB and RB.

A DL not only stores axioms and assertions, but
also offers some reasoning services, such as KB
satisfiability, concept satisfiability or subsumption.
However, if a DL is closed under negation, most of the
basic reasoning tasks are reducible to KB satisfiability,

so it is usually the only task considered!**".

1.2 Certainty lattices
Let L=(CV, <) be a certainty lattice (a complete
lat‘[ice)[zo’24

< is a partial order over CV. Let @ and ® be the join

I where CV is a set of certainty values and

and meet operators induced by <, respectively. Let f
and ¢ be the least and greatest element in CV,
respectively. We also assume that there is a function
from CV to CV, called negation function (denoted by
—) that is anti-monotone w.r.t. < and satisfies ——a=¢,
YV aeCV. The main idea is that an assertion a:C, rather
being interpreted as either true or false, will be mapped
into a certainty value ¢ in CV. The intended meaning is
that ¢ indicates to which extend (how certain it is that)
“aisa C”.

Typical certainty lattices are (given a set of real
values CV, consider Lcy=(CV, <)) as follows.

Classical 0-1: Loy corresponds to the classical
truth-space, where 0 stands for ‘false’, while 1 stands
for ‘true’.

Fuzzy: Ly 1}, which relies on the unit real interval,
is quite frequently used as certainty lattice. In Ly,
—o=1-ais quite typical.

Four-valued: Another frequent certainty lattice is
Belnap’s FOURPY, where CV is {f; ¢, u, i} with f<u<t
and f<i<t. Here, u stands for ‘unknown’, whereas i
stands for inconsistency. We denote the lattice as L.
Additionally, besides —f=t, we have —u=u and —i=i.

Many-valued: L= {O,L,---,n_z,l},g , N
n—1 n—1

positive integer. A special case is Ly, where CV is {f, If,
It, t} with f<If<It<t. Here, If stands for ‘likely false’,
whereas /t stands for ‘likely true’. Besides —f=t, we
have —If=lt.

Belief-Doubt: A further popular lattice allows us
to reason about belief and doubt. Indeed, the idea is to
take any lattice L, and to consider the cartesian product
LxL. For any pair (b, d)eLxL, b indicates the degree of
believing a reasoning agent has about a sentence s,
while d indicates the degree of doubting the agent has
about s. The order on LxL is determined by (b, d)<(¥’,
d") iff b<b' and d<d', i.e., belief goes up, while doubt
goes down. The minimal element is (f, ) (no belief,
maximal doubt), while the maximal element is (¢, f)
(maximal belief, no doubt). Negation is given by —(b,
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d)=(d, b) (exchange belief with doubt).

2 Fuzzy description logic over
lattices L-SROIQ(D)

In this section we define the fuzzy DL over
lattices L-SROIQ(D), which is a fuzzy extension of the
DL SROIQ(D) where concepts denote fuzzy sets of
individuals, roles denote fuzzy binary relations, and
axioms are extended to the fuzzy case in such a way
that some of them hold to a degree in a certainty lattice L.
2.1 Syntax and semantics

A fuzzy concrete domain D is a pair {(4p, Dp),
where 4p is a concrete interpretation domain, @p is a
set of fuzzy concrete predicates d with an arity n and
an interpretation dp: Ap" — CV, which is an n-ary
fuzzy relation over 4p, and L=(CV, <) is a certainty
lattice. For simplicity we assume arity 1.

Similarly, as in SROIQ(D) and f-SROIQ(D)"'",
L-SROIQ(D) assumes three alphabets of symbols, for
concepts, roles and individuals.

Let n, m be natural numbers (=0, m>0) and
a;€CV. The concepts (denoted C or D) of L-SROIQ(D)
can be built inductively from atomic concepts (4), top
concept T, bottom concept L, named individuals (o;),
abstract roles (R), concrete roles (7), simple roles (S,
which will be defined below), and fuzzy concrete
predicates (d) as:

C, D>T| L] 4] =C| CrD| CcuD| 3R.C| VR.C|
AT.d| VT.d| {ai/o), a0y, cplon}|=m S.C|<n S.C|
=2m T.d|<n T.d| 35.Self] [C= ]| [C< 4]

The abstract roles (denoted R) of L-SROIQ(D)
can be built inductively according to the following
syntax rule:

R—>RYR|U[R>q]

Concrete roles are denoted 7 and cannot be
complex.

Abstract individuals are denoted a, beA’, and
concrete individuals are denoted ve4.

Note that we will not allow modified concepts
and modified roles in our L-SROIQ(D), since the
definition of the modifier under lattices is unclear at
present. However, indeed, this is definitely a point that
has to be addressed in forthcoming works.

In the rest of the paper, we will assume e {3, >,

<, <}, a, B, yeT, a#f, f#t. The symmetric >~ and the
negation < of an operator > are defined as in table 1:
Table 1 The definition of b4, D" =<

> > —
p < <
> < <
< > >
< > >

An L-SROIQ(D) knowledge base KB comprises a
fuzzy ABox (AB), a fuzzy TBox (TB) and a fuzzy
RBox (RB).

A fuzzy ABox (AB) consists of a finite set of
fuzzy assertions. A fuzzy assertion can be an inequality
assertion (a#b), an equality assertion {(a=b) or a
constraint on the certainty value of a concept or role
assertion, namely, an expression of the form {y > «),
w > B, (y < p)or (y < a), where y is of the form
a:C, (a, b):R, (a, b):—R, (a, v):T or (a, v):—T.

A fuzzy TBox (TB) consists of fuzzy GCls, which
constrain the certainty value of a GCI, i.e., they are
expressions of the form (CED > @) or (CED > p).

A fuzzy RBox (RB) consists of a finite set of role
axioms, which can be fuzzy RIAs (WER > ), (WER
> ) for a role chain w=R,, Ry,***, R,, ot (T\ET; > a),
(T'ET, > p), or any other of the role axioms from the
crisp case: transitive role axioms trans(R), disjoint role
axioms dis(Sy, S;), dis(T, T3), reflexive role axioms
ref(R), irreflexive role axioms irr(S), symmetric role
axioms sym(R) or asymmetric role axioms asy(sS).

We are ready now to formally define simple roles.

Simple roles are defined as in the crisp SROIQ(D)
and the fuzzy f-SROIQ(D)” ', 1) R, is simple if it
does not occur on the right side of a RIA, 2) R is
simple if R is, 3) if R occurs on the right side of a RIA,
R is simple if, for each (WER > »), w=S for a simple
role S.

Note that concrete roles are always simple.

A fuzzy axiom is positive (denoted (7 > a)) if it is
of the form (7 > @) or (z > f), and negative (denoted
(t < ap) ifitis of the form (z < P or{r < ). (t= )
is equivalent to the pair of axioms (7 > «) and {7 < a).
If nothing is specified we assume that a fuzzy axiom is
true with degree ¢, so we can use the abbreviation: 7=
(T 10).
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As in the f-SROIQ(D) DLP' negative fuzzy
GCIs or RIAs are not allowed in L-SROIQ(D),
because they correspond to negated GCIs and RIAs
respectively, which are not part of crisp SROIQ(D).

Now we will introduce some definitions which
will be useful to impose some limitations in the
expressivity of the language.

A strict partial order < on a set S is an irreflexive
and transitive relation on S. A strict partial order < on
the set of roles is called a regular order if it also
satisfies R|<R, <> R, <R, for all roles R; and R,.

A RIA (WER >y) is <—regular if R is atomic and:
1) w=RR, or 2) w=R, or 3) w=Sy, S5,*, S, and S;<R
for all =1, 2,---, n, or 4) w=RS, Sz,--, S, and S;<R for
all i=1, 2,---, n, or 5) w=Sy, S,-*-, S,R and S;<R for all
i=1, 2, n.

As in the crisp SROIQ(D) and the fuzzy
f-SROIQ(D)™ '), there are some restrictions in the use
of roles, in order to guarantee the decidability of the
logic.

Firstly, some concept constructors require simple
roles: non-concrete qualified number restrictions and
local reflexivity. Some role axioms also require simple
roles: disjoint, irreflexive and asymmetric role axioms.
Role axioms cannot contain the universal role U.
Finally, every RIA should be <-regular for a given
regular order <.

Let us now turn to the semantics of L-SROIQ(D).
L=(CV, <), an
L-interpretation / with respect to a fuzzy concrete

For a certainty lattice
domain D is a pair (4’, #') consisting of a non empty set
A" disjoint with A, and a fuzzy interpretation function
o/ mapping:

1) Every abstract individual @ onto an element o’
of A"

2) Every concrete individual v onto an element vp
of Ap.

3) Every concept C onto a function C: 4" — CV.

4) Every abstract role R onto a function R A'xA’
- CW.

5) Every concrete role 7 onto a function T*: A'x4p
- CW.

6) Every n-ary concrete fuzzy predicate d onto the
fuzzy relation dp: 4p" — CV.

The complete set of semantics of L-SROIQ(D)-

concepts and L-SROIQ(D)-roles is depicted as
follows:

1) Ta)y=;

2) (@),

3) (CND)/(a)=C(@)®D'(a);

4) (CuD)(ay=C(@)®D'(a);

5) (=0O)'(@)=—C'(a);

6) (VR.O)(a)=®,_, {—R'(a, d)®C(d)};

7) GRO (@)=, {R(a, d)OC(d)};

8) (VT.d)(a)=®,_, {~T'(a, »®dp(v)};

9) AT.d)(a)=8,., {T'(a, )®dp(»)};

10) ({a/or, afor, =, awlon}) (@=@,,_, a

1 (Zm SO@=®,, , . (o e

{d,.dy,-.d,, }|=m

d)®C'(d))} };

12) (< n SO === ntl S.0)(a)=
(@ {(=S(a, d)®C'(d)} };

dy,dy,esd, ed’
[{d).dy - .dyyy Y=n+]

13) (Z m T'd)l(a): @vl,vz,u-,vmeAD { ®1m:1 {T[(Cl,
[V ey H=m
v)®dp(vi)} };
14) (< n Td'a) =(—(= n+l
(@11 {=T'(a, v)®dp(v)} };

T.d))(a)=

ViaVy sV €4p
{5V eV Hi=n+l

15) (38.Self) (a)=S(a, a);

16) ([C3 a])(a)=t if C'(a) > a, f otherwise;

17) (IC< A (a)=t if C'(a)< B, f otherwise;

18) (R")(a, b)=R'(b, a);

19) U'(a, b)=t,

20) ([R> a])l(a, b)=tif Rl(a, b)»> a, f otherwise.

Obviously, C' denotes the membership function of
the fuzzy concept C w.r.t. the L-interpretation /. C! (a)
gives us the degree of certainty of being the individual
a an element of the fuzzy concept C under /. As in the
crisp SROIQ(D) and the fuzzy f-SROIQ(D)” ", we do
not impose Unique Name Assumption, that is, two
individual names (or nominals) might refer to the same
individual.

The L-interpretation is extended to fuzzy axioms
(or assertions) as follows:

1) (@:0)=C(a);

2) ((a, b):RY=R'(d", b');

3) (@, b):=R)'=—R'(d", b');

4) ((a, v):D=T'(d", vp);
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5) (a, v):=D)'==T'(d’, vp);

6) (CED)=®,_, {~C(d)®D'(a)};

) R R RER=®, AR,
d))®-®(—R, (dy, dyi1))OR(d1, dyi1)};

8) (ET)=® {=Ti'(a, V®Ty(a, v)}.

An L-interpretation I=(A1, 01) satisfies (is a model
of, denoted /E=):

1) {a:C ) iff (a:C) <y,

2) {(a, b):R > iff ((a, b):R)' >4y,

3) ((a, b):—R >19) iff ((a, b)—R)' >y,

4) ((a, v):T >4p) iff ((a, v):T) <y,

5) ((a, v):=T ><19) iff ((a, v):=T) >4y,

6) (a=b) iff a'#b";

7) (a=b) iff a'=b',

8) (CED ) iff (CED) >y,

9)(Ry, Ry,++, RyER > p) iff (Ry, Ro,, R,ER)'>

10)(T\ET, > ) iff (MET) >y,

11) trans(R) iff Va, ced’, Ri(a, ¢)»®
bY®R'(b, ¢)};

12) dis(S,, S») iff Va, bed, Si'(a, b)=f or S,/(a,
b)=f,

13) dis(Ty, T») iff Yaed', vedp, Ty'(a, v)=f or
T)'(a, v)=f;

14) ref(R) iff VaeA', R(a, a)=t;

15) irr(S) iff Vaed', S'(a, a)=f:

16) sym(R) iff Va, beA', R'(a, b)=R'(b, a);

17) asy(S) iff Va, bed', if S'(a, b)>f then S'(b,
a)y=/,

Now, we will define the reasoning problems of
the L-SROIQ(D) DL.

We will say that two fuzzy concepts C and D are
said to be equivalent (denoted by C=D) when C'=D'
for all L-interpretation /. Two fuzzy assertions ¢; and
&, are said to be equivalent (denoted by £1=¢) iff they
are satisfied by the same set of L-interpretations.

An L-interpretation / satisfies an L-SROIQ(D)
knowledge base KB=(AB, TB, RB) (resp., an ABox
AB, a TBox TB, an RBox RB) if it satisfies each
element in KB (resp., AB, TB, RB); in this case, we
say that 7 is a model of KB (resp., AB, TB, RB). An
L-SROIQ(D) knowledge base KB is

(unsatisfiable) iff there exists (does not exist) an

aeA’ Vel

{R(a,

bea!

satisfiable

L-interpretation / which satisfies all elements in KB.

An L-SROIQ(D)-concept C is satisfiable (unsatisfiable)
w.r.t. an RBox RB and a TBox TB (resp., a knowledge
base KB) iff there exists (does not exist) some model /
of RB and TB (resp., KB) for which there is some
aeA’ such that C'(a)=a, and o#f. In this case, C is
called a-satisfiable w.r.t. RB and TB (resp., KB). Let C
and D be two L-SROIQ(D)-concepts. We say that
(CED >» w.r.t. RB and TB if for every model / of RB
and TB it holds that (C=D)>y Furthermore, an
L-SROIQ(D) ABox AB is consistent w.r.t. RB and TB
if there exists a model / of RB and TB that is also a
model of AB. Moreover, given a fuzzy concept axiom
or a fuzzy assertion pe {{CED >y), (y X))}, where
v is of the form a:C, (a, b):R, (a, b):—R, (a, v):T or (a,
v):—T, an L-SROIQ(D) knowledge base KB entails ¢,
written KBE ¢, iff all models of KB also satisfy ¢.

Finally, given a fuzzy knowledge base KB and an
assertion it is interest to compute ¥’s best lower and
upper certainty-value bounds. We define the greatest
lower bound of i w.r.t. KB (denoted by glb(KB, 1)) to
be ®{a KB=(yw>a)}, where @¢=f. Similarly, we
define the least upper bound of y w.r.t. KB (denoted by
lub(KB, ¥)) to be ®{f KB=(y</p)}, where ®g=t.
Determing the glb and lub is called the Best
Certainty-Value Bound (BCVB) problem.

In the rest of the paper we will only consider
fuzzy knowledge base KB satisfiability, since (as in the
crisp case and the fuzzy case) many other reasoning
problems can be reduced to this problem!® %1741,

As in the f-SROIQ(D) DL, in order to manage
correctly infima and superma in the reasoning, we also
need to define the notion of witnessed interpretations.
An L-interpretation / is witnessed iff it verifies:

1) for all aed’, there is bed’ such that
(3R.C)(a)=R'(a, b)®C(b), and

2) for all aeA[, there is vedp such that
(3T.d)(a)=T'(a, v)®dp(v), and

3) for all aed’, there is bed’ such that
(VR.C)(a)=—R(a, b)®C'(b), and

4) for all aeA’, there is vep such that (VT.d)'(a)
=—T%(a, b)®dp(v), and

5) there is ae4’ such that (CEDY=—C(a)®D(a),
and

6) there are ay, as,***, A+ eA" such that (R, Ry, **+,
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R.ER/=(=R\ (a1, a))® " &(—R'(a,, an1)) ®R(ai,
an+1), and

7) there are aed’, vedp such that (T\ET5)'=
(—T'(a, v))®T:/(a, v), and

8) if I=trans(R), for all a, ceA’, there is beA’ such
that @, , {R(a, b"Y®R(Y', ¢)}=R'(a, b) ®R'(b, ¢).

Now we shortly discuss the fuzzy nominals of our
L-SROIQ(D).

In fuzzy DL literature, there are proposals for

1832 and fuzzy nomimals'™®'%*] In the

crisp nominals!
current paper we use fuzzy nomimals. Moreover, the
semantics of the fuzzy nomimals are based on certainty
lattices. Recall that it are defined as:
({alor, alor, anfon)) (=@, a
Obviously, the semantics of the fuzzy nomimals
presented in this paper is an extension of that of fuzzy

nomimals! 1%

1. Since we are not imposing unique
name assumption, it is possible that a=(01-)1 for more
than one o;. This is the reason why we need to compute
the supremum over the ¢; associated to these named
individuals o;. And, of course, if Vie{l, 2,---, m},
d#(0,), then ({a1/o1, rl02,"+*, Cplow}) (d)=D ¢=F.

Finally, we discuss the fuzzy concrete domains of
our L-SROIQ(D).

Let us recall the notion of the fuzzy concrete
domains in the f-SROIQ(D) DL firstly. A fuzzy
concrete domain D is a pair (4p, @p), where Ap is a
concrete interpretation domain, @p is a set of fuzzy
concrete predicates d with an arity » and an
interpretation dp: 4p" — [0, 1], which is an n-ary fuzzy
relation over 4 D[18’34].

On the other hand, concerning non crisp fuzzy
domain predicates, we recall that in fuzzy set theory
and practice there are many membership functions for
fuzzy sets membership specification. However, the
triangular, the trapezoidal, the left shoulder function
and the right shoulder function are simple, yet are most
frequently used to specify membership degrees (see
Ref. [9-10,18] for more details). For example, Ref. [9]
and Ref. [10] restrict them to the trapezoidal
membership function trap: Q1 [k1, k2] — [0, 1] which

is defined as follows:

1) trap, . (53 q1, 92, 3, q=(x—q1)/(q2—q1), if
xelq1, q2];

2) trap, , (X; 91, G2, 43, 94)=1, if x€[qo, g3];

3) trap, . (X3 q1, 92 g3, q4)=(qa—x)/(qa—q3), if
x€lgs, q4];

4) trap, , (x5 q1, @2, g3, q2)=0, if x€[k1, 11U [ga,
ko).

In fact, the trapezoidal membership function can
be wused to represent other popular membership
functions such as the triangular trig 1,(x; g1, g2, q3), the
left shoulder function L x(x; q1, q2) and the right
shoulder function R, 1,(x; g1, g2) as trap ¢, 4,(x; q1, G2, G2,
q3), trap x, i, (x; k1, ki, q1, q2) and trap x, 4,(x; g1, q2, k2, k2)
respectively.

Now, in our L-SROIQ(D), a fuzzy concrete
domain D is a pair {4p, @p), where Ap is a concrete
interpretation domain, @) is a set of fuzzy concrete
predicates d with an arity #» and an interpretation dp:
Ap" — CV, which is an n-ary fuzzy relation over Ap,
L=(CV, <) be a certainty lattice. Obviously, we need
to extend the interpretation dp: Ap" — [0, 1] of
f-SROIQ(D) to dp: 4p" — CV of L-SROIQ(D). That is,
the domain of the interpretation dp of L-SROIQ(D) is
the set of certainty values CV (not the real unit interval
[0, 1]).

In order to define the fuzzy concrete domains and
provide reasoning preserving procedure for L-SROIQ
(D), in what follows, we assume the lattice L is a linear
order.

If the set of certainty values CV is continuous and
infinite (e.g. the lattice over the real unit interval [0, 1]
with order <), we may define a similar trapezoidal
membership function trap 4, 4+,(x; g1, g2, g3, q4) as in Fig.
2a. If the set of certainty values CV is discrete and
finite (e.g. Ly,1;, Belnap’s FOUR and L, (see Section
2.2), or the certainty lattice L=(CV, <) defined in
Example 1), we may define the membership function
Sk (6 1, g2, qi1, gi) as in Fig. 2b.

In the rest of this work we will restrict ourselves
to the discrete membership function f, 1,(x; g1, q2,-,

qr-1, qr)- Hence, we assume a unique fuzzy predicate

A= 1,515 92,75 Gi1> G-
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Fig.2 Membership functions defined in [k, ;]

2.2 Logical properties

It can be easily shown that L-SROIQ(D) is a
sound extension of f-SROIQ(D), in the sense that
L-interpretations coincide with fuzzy interpretations if
we restrict the degree of certainty to the lattice over the
real unit interval [0, 1] with order<<. In the following,
we discuss some properties of our DL L-SROIQ(D).

The first ones are straightforward: - T=1, - 1=T,
CnT=C, CUl=C, CMl=1l, CUT=T, dR.1=1 and
VR.T=T, where C is a fuzzy, R is an abstract fuzzy
role.

The definitions of the operators over lattices (see
Section 1.2) imply that the following properties hold:

Proposition 1 Let C, Cy, C,, C; and D be five
L-SROIQ(D) concepts, R L-SROIQ(D) abstract role
and S simple L-SROIQ(D) abstract role. Then

1) =—C=C, CNC=C, CUC=C;

2) =(CMD)=-CU-D, ~(CLD)=—Cr—-D;

3) «(VR.C)=3R.—C, —~(3R.C)=VR.—-C;

4) (<n 8.0=(—(=n+1 5.0)), (=Zm S.O)=(—~(<
m—1 S.0)).

Proof This is easily obtained from the definitions
of semantics of L-SROIQ(D) concepts (see Section
L.1).

Please note that the properties 1)~3) are satisfied
in L-SHIN™*. From Proposition 1 we know that these
properties are also satisfied in L-SROIQ(D). On the
other hand, From Proposition 1 we also know that it
would be possible to transform fuzzy concept
expressions into a semantically equivalent Negation
Normal Form (NNF), which is obtained by using the
equivalences of Proposition 1 to push negation in front
and local

of atomic concepts, fuzzy nominals

reflexivity concept (3S.Self).

Proposition 2  For a certainty lattice L=(CV, <),
yeCV, >e{», >} and <e{<, <}, the following
properties are verified:

1) {a:=C > p=(a:C > —p);

2) {a:=C 4p=(a:C <" —p);

3) {(a, b):=R >p=((a, b):R >"—p);

4) {(a, b):—=R <p=({(a, b):R <" —p);

S (a, v):=T >p=a, v):T > —=p);

6) {(a, v):—=T <p=(a, v):T < =p).

Proof To be omitted.

Obviously, we can assume that negated role
assertions of the form {(a, b):—=R > ) or {(a, b):—=R <)
do not appear in the fuzzy knowledge base KB (and

similarly for concrete roles) due to the equivalences

3)~6) of Proposition 2.

Similarly as in L-SHIN™®¥, we have the following
properties about entailment in our fuzzy DL
L-SROIQ(D).

KBE(y=a) iff glb(KB, y)>a, and similarly
KB=(p<p) iff lub(KB, y)<pf. Furthermore, from
(a:CLp) iff {a:—=C»—p) (see 1) of Proposition 2), it
follows Iub(KB, a:C)=—glb(KB, a:—C). From {(a,
b):RLp) iff {(a, b):—R>—p) (see 3) of Proposition 2),
it follows Iub(KB, (a, b):R)=—glb(KB, (a, b):—=R).
Similarly, from {(a, v):T<f) iff {(a, v):=T>=—p) (see 5)
of  Proposition 2), it lub(KB, (a,
v):T)=—glb(KB, (a, v):—=T). Therefore, lub can be
through glb

follows

determined and vice in
L-SROIQ(D).

L-SROIQ(D) allows some sort of modus ponens
over concepts and roles, even with the new semantics
of fuzzy GCls:

Proposition 3 For a linear ordered certainty

lattice L=(CV, <), a, feCV, >e{>, >}, f+t> -«

versa
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(where +3= = >, +> = »), the following properties are
verified:

1) {a:C >ay and (C=D > f) imply {(a:D > f).

2) {(a, b):R > ) and (RER' > ) imply {(a, b):R’
> f).

3) {(a, b):R >a) and (a:VR.C >p) imply (b:C
> f).

Proof To be omitted.

Finally, we will provide the property about
soundness of the semantics.

Our fuzzy semantics based on certainty lattices is
sound w.r.t. crisp semantics. In fact, let KB=(AB, TB,
RB) be an L-SROIQ(D) knowledge base. Let us
consider the following transformation #(-) of fuzzy
assertions (resp. fuzzy axioms) into assertions (resp.
axioms), where #(-) takes the “crisp” assertional (resp.
terminological) part of a fuzzy assertion (resp. fuzzy
axiom):

HY> ) > v,

#(a:C4y) > a:—C;

#((a, b):R<y) > (a, b):—R;

#((a, v):T<y) > (a, v):—T,;

#((a, b):=R<1y) > (a, b):R;

#((a, v):=T<y) > (a, v):T;

#(CED 1>9) > CED;

#((WER >7)) > wER.

We extend #(-) to fuzzy knowledge base KB=(AB,
TB, RB) as follows: #(KB)={#(<)| {ecAB} U {#(J)|
£eTB} U {#({)| £eRB}. It can be shown that

Proposition 4 For a certainty lattice L=(CV, <),
yeCV, >e{>, >} and de{x, <}, let KB=(AB, TB,
RB) be a fuzzy knowledge base and let { be a fuzzy
assertion (or a fuzzy axiom), i.e., {'is an expression of
the form (y>N.(y<yp), (CED >y or (WER D>,
where v is of the form a:C, (a, b):R, (a, b):—R, (a, v):T
or (a, v):—T. If KB=, then #(KB)=#(J).

The proof is similar to the proof of Theorem 3 of
Ref. [24].

3 Acrisp representation for
L-SROIQ(D)

In this section we show how to reduce an
L-SROIQ(D) fuzzy knowledge base KB into a crisp
SROIQ(D) knowledge base. The procedure preserves

reasoning, so existing SROIQ(D) reasoners such as
Pellet™, FaCT++%% and RACER""! could be applied
to the resulting knowledge base.

The basic idea is to create some new crisp
concepts and roles, representing the a-cuts of the fuzzy
concepts and relations, and to rely on them. Next,
some new axioms are added to preserve their
semantics and finally every axiom in the ABox, the
TBox and the RBox is represented, independently from
other axioms, using these new crisp elements. In fact,
the reduction presented in this section is an extension
of that of f~SROIQ(D) under Zadeh semantics and
Godel semantics™'” and L-ALC under linear ordered
lattices™"),

In Ref. [4,9-10,33,38] it has been shown that
reasoning in fuzzy DLs can be reduced to reasoning in
classical DLs and, thus, already existing reasoners can
be applied directly. The first effort in this direction is
due to Straccia, who showed a reasoning preserving
procedure for fuzzy ALCHP*. Recently, Ref. [4,10]
provided a crisp representation for the fuzzy DLs
f-SROIQ and f-SROIQ(D) respectively. It needs to be
noted that in the rest of this paper we will restrict
ourselves to the linear ordered lattices.

3.1 Adding new elements

Let AC be the set of atomic concepts, RA the set
of atomic abstract roles and TC the set of concrete
roles in a fuzzy knowledge base KB=(AB, TB, RB).
Ref. [20] showed that the set of the degrees of certainty,
which must be considered for any reasoning task in
L-ALC, is defined as follows.

Consider an L-ALC knowledge base KB. Define
XP={f, U {f (y>eKB}y U {—4f (y<7)eKB},
from which we define N"=X®U {—y yeX*®}. If
there is y' €T such that —y'=y", then we add 7 to X*®.

This also holds in L-SROIQ(D). Without loss of
generality, it can be assumed that N“®={y, 5, Vs, }
and %<y, for 1<i<<IN“B|—1. It is easy to see that
y1=fand 7|NKB\:t'

For each a, BeN*® with a#f and B, for each
AeAC, two new atomic concepts A, A.p are
introduced. A4, represents the crisp set of individuals
which are instance of 4 with degree of certainty higher
or equal than ¢, i.e., the a-cut of 4. 454 is defined in a
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similar way.

Similarly, for each R,eRA and for each TeTC
two new atomic abstract roles R4, R4>p5and two new
concrete roles T4, T> s are introduced.

The atomic elements 45, Ry, T>4, A»p Ryspand
Ty are not considered because they not necessary, due
to the restrictions on the allowed degree of certainty of
the axioms in the fuzzy knowledge base KB.

The semantics of these newly introduced atomic
concepts and roles is preserved by some terminological
and role axioms. For each 1<\i<<IN*P|-1, 2</<<
IN“B-1 and for each 4e AC, TBX(N*®) is the smallest
TBox containing these two axioms:

A>7,~+1 EA>y[ and A>_7/EA>7,“

Similarly, for each R,eRA, RAX(NKB) is the
smallest RBox containing the following two axioms:

RAHMERAM, and RA>7[ERA>yi.

And for each TeTC, RCX(N*®) is the smallest
RBox containing the following two axioms:

T>7[+IET>7[ and T>7[ET>%.

Previous work!?”! used two more atomic concepts
A<p, A< and the following additional axioms (for 2<k
<|N®B)):

A<y EAzy, A<y EA<y . Ay NA<,E1, 4,0
A<, EL, TEAy, A<, TEAs, LIAx,.

In contract to this, we use -4 " rather than A< "
and 4, instead of A<,,. This way is the same as that
of f-SROIQ and f{-SROIQ(D) proposed in Ref.
[4,9-10,39]. The six axioms above follow immediately
from the semantics of the crisp concepts as Proposition
5 shows:

Proposition 5 If 4., E4-, and 4-,EA4;,
hold, then the following axioms are verified:

1) =45y E—dsy, 2) Asy sy,

3) 45, MN—45,E 1, 4) A»yM—As,E 1,

5) TEA»y,U—A5y, 6) TEA-yLI-A>y.

Proof To be omitted.

Obviously, Proposition 5 is similar to Proposition
2 of Ref. [10]. The aim is to optimize the size of
T(N®P).

Similarly as f-SROIQ(D)®'", we do not
introduce the axiom 4»/E4. 4 since 4,.¢is equivalent to
T the axiom trivially holds. On the other hand, in the
case of roles, we use —R,_, instead of R <, as we

will see in the next subsection. This idea is essential in

order to represent some of role constructors of
SROIQ(D) (negated role assertions and self reflexivity
concepts). Actually, it is not possible to use a role of
the form R A<y, rather than —R " and R < " instead of
ﬁRAMk. The reason is that the logic does not make
possible to express the corresponding version of the
axioms 3), 4), 5) and 6) of Proposition 5, which would
be necessary to guarantee the correctness of the
reduction, because the role conjunction and the bottom
role are not allowed, and the universal role cannot
appear in RIAs.
3.2 Mapping fuzzy concepts, roles and axioms
Fuzzy concept and role expressions are reduced
using mapping o, as shown in Tables 2 and 3
respectively. Concrete predicates are reduced as in
Table 4.

Table 2 Mapping of fuzzy concept expressions

x y L))
T >y T
T qQy 1
1 >y 1
1 qQy T
A >y A>y
4 <y %
~C by AC, bp)
cnp >y AC, >PHNpD, >7)
cnp Qy AC, apUAD, <17)
cubp >y AC, > PUAD, >7)
cubp Qy AC, apnpD, <17)
arR.c >y AR, >9).4C, >7)
R.C <y 3AR, =<).p(C, <17)
ard >y AT, > P.od, >7)
rd <y IPT, ~<p).Ad, <9P)
VR.C {= >}y VAR, >, =}=9.0C, {3, >}
VRC ay IPR, <. AC, <7)
vT.d = >y VAT, (-, = }=9.0d, =, >17)
vT.d <y INT, <—p).p(d, <)
{m/ooll:n/a;:;z,"', >y {o] a1y, 1<i<m}
=ZmS.C >y =Zm (S, >9).0(C, >)
=mS.C <y Sm—1 oS, =<1p).p(C, =<17)
=mTd >y =m (T, > p).p(d, > )
ZmTd <y <m—1 §(T, =<17).p(d, —<17)
<nS.C {>, >}y <n (S, {>, =}-9.0C, {>, =}
<ns.C <y Zntl oS, <=p.AC, =)
<nTd Dby ST DA, )
snTd ay =+l o(T, <C—p).pd, <)
38.Self >y 3p(S, > 7).Self
3S.Self ay —3p(S, ~<17).Self
[Cxa] >y oC, =a)
[C>d] <y AC, <a)
[C<p) >y AC. <P
[C</ <y AC.>P
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Table 3 Mapping of fuzzy role expressions

x y P, Y)
Ry >y Ry,
Ry dy —Ry_<y
T >y Tsy
T dy =T«
R by PR, 1)
U >y U
U ay U
[R>a] >y AR, =a)
[R>a] dy AR, <a)
R >y AR, <))
R <y PR, =)
T >y AT, <))
-7 ay AT, )

Table 4 Mapping of fuzzy concrete predicates

X y o, ¥)

d ra real[q o, Gor+)

d B reallgp-—, qp-+)

d <p union-real[ki, ¢p<+, ¢p<—, k2]
d <a union-real[ky, q,<+, <, k2]

Gar—s Garts 4B qpr+> 4p<+> 4p<—s Ga=<+ and gg<_
are defined as follows.

Without loss of generality, it can be assumed that
NKB:{% B Vi Y= s Ve @ Vs Ve B
Vit vks)y and %<4, for 1<i<|NKB|—1.

qa»-=mIN{X] fi (65 415 G275 Qi1 GR)= 255

qa=min{x| fi (65 15 G225 Goets GR)=Ye A TYs y
SX A i, 0541 92577, Qi1 GO

qp--=I0X] foy (X5 G15 G255 Gh1 GO =T0

qp-=min{x| fi, i,(X; q1, @27, i1, G=F A I, y<
X A SekVs 415 4275 Qi1 GR)=t}s

qp<=min{x] fi, 1,(X: q1, 42,7 k-1, GO=Th} 5

qp<-=min{x| fi, 1,(5 q1, G275 Git, Q=P A Iy, ¥y
XA JikoVs G15 G255 Q15 g7

qo<+=min{x] fi 1, (5 q15 92,5 Gi-1> Q=AY

Ga<—=mIn{xX| ft, 1(X; q1, G2, Qit, G=Pe A A, ¥
SX A Si 05 415 42575 Qi1 L

Given a fuzzy concept C, p(C, =) is the a-cut of
C, a crisp set containing all the elements which belong
to C with a degree of certainty greater or equal than a.
The other cases p(C, P<y) are similar.

Given a fuzzy role R, p(R, »>a) is a crisp set
containing all the pair of elements which are related
through R with a degree of certainty greater or equal
than a. The other cases p(R, >y and o7, D<) are
similar.

Finally, due to the restrictions in the definition of

the fuzzy knowledge base KB, some expressions
cannot appear during the process:

1) p(R, <p), p(U, <p) and o(T, <y) can only
appear in a (crisp) negated role assertion.

2) (4, =), (4, >1), (A, <) and p(4, <f)
cannot appear due to the existing restrictions on the
degree of certainty of the axioms in the fuzzy
knowledge base KB. The same also holds for T, L, R,
Tand U.

Axioms are reduced as in Table 5, where &(7)
maps a fuzzy axiom 7 in L-SROIQ(D) into a set of
crisp axioms in SROIQ(D). We note kA(AB) (resp.
k(TB), k(RB)) the union of the reductions of all the
fuzzy axioms in AB (resp. TB, RB).

Table 5 Reduction of the axioms

T k(7)
(a:Cp) {a:p(C, M p)}
((a, b):R 27 {(a, by:p(R, 24}
{(a, v):T >y {(a, v): AT, Xp)}
{(a, by—=R >y {(a, b):p(—R, D7)}
{(a, v):=T >y {(a, v):o(=T, >y}
{a#b) {a=b}
(a=b) {a=b}
(CED > ) AC, >—=a)EpD, >a)
(CED > B AC, =—BEAD, > P
(Ri, Ry, R,ER > {P(R1, > =), p(Ra, > =), PR,
a) >—a)EPR, =)}

(Ry, Ry,***, R,ER > {o(R\, ==, P(R1, =—B),"*, ARy,
P >—BEAR, >P)}
(MET > a) (AT, =)D, > )}
(T'ET, > B (AT, =—P=pAT>, >p)}

U, oy {trans(o®, )} U
trans(R)

y e NCun {trans(o(R, > )}
dis(S1, $2) {dis(o(S1, /), P(S2, >}
dis(Ty, T2) {dis((T1, =), AT, >/))}

ref(R) {ref(o(R, >1))}
irr(S) {irr((S, >/))}

U, _yes, fsym(o(®, = 7)) U
sym(R) ! v

7 v g {sym(o(R, > 7))}

asy(S) {asy(X(S, =)}

Obviously, the mappings p and & defined above
are semantic extension of the mappings o and k&
defined in Ref. [9] for f-SROIQ(D) under Zadeh
semantics. That is, the mappings p and & defined above
are based on linear ordered lattices, but the mappings p
and k defined in Ref. [9] are based on the real unit
interval [0, 1].
3.3 Correctness of the reduction

As in the f-SROIQ(D) DL the reduction
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presented in Section 3.2 preserves simplicity of the
roles and regularity of the RIAs.

The following theorem shows that our
L-SROIQ(D) over linear ordered lattices is decidable
and that the reduction preserves reasoning.

Theorem 1  The satisfiability problem in
L-SROIQ(D) over linear ordered lattices is decidable.
Furthermore, an linear order L-SROIQ(D) fuzzy
knowledge base KB=(AB, TB, RB) is satisfiable iff its
crisp representation A(KB)=(k(AB), TBXWN*®) U
k(TB), RAX(N*®) U RCX(N*®)U k(RB)) is satisfiable.

Proof To be omitted.

As in the f~SROIQ(D) DL, our procedure for
L-SROIQ(D) also has the modularity property. That is,
we have the following property.

Theorem 2 Let KB be an L-SROIQ(D) fuzzy
knowledge base involving a set of fuzzy atomic
concepts AC, a set of atomic roles R, and a set of
concrete roles R, let NB be the set of relevant
certainty degrees to be considered and let 7 be an
L-SROIQ(D) axiom such that:

1) For every atomic concept A which appears in 7,
AeAC;

2) For every atomic role R4 which appears in 7,
R4eR,;

3) for every concrete role T which appears in 7,
TeR,;

4) If yappears in 7, then yeN*.

Then, the reduction of the union of the KB and
the axiom 7 is equivalent to the union of the reduction
of KB and the reduction of =

KKBU 2)=k(KB)U (7).

The proof of Theorem 2 is similar to that of
Theorem 2 of Ref. [10].

Regarding the obviously, the
complexity of the reduction of our L-SROIQ(D) is the
same as that of the f-SROIQ(D) DL %! That is, the
resulting knowledge base is quadratic. The ABox is

complexity,

actually linear while the TBox and the RBox are both
quadratic (see Ref. [9-10] for more details).

4 Conclusions

Making applications capable of coping with

vagueness (fuzziness) and imprecision will result in the

creation of systems and applications which will
provide us with high quality results and answers to
complex user defined tasks. To this extent we have
presented a very expressive fuzzy DL L-SROIQ(D)
based on certainty lattice theory. Concretely, our work
presents several contributions. Firstly, we augment the
expressivity of fuzzy DLs by allowing the definition of
fuzzy sets by extension and by allowing fuzzy GCls
and fuzzy RIAs to be verified up to some degree.
Secondly, we present a very expressive fuzzy DL over
uncertainty lattices L-SROIQ(D). Finally, we show the
decidability of L-SROIQ(D) by providing a reasoning
preserving procedure to obtain a crisp representation
for it in case of linearly ordered lattices.
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