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Abstract  Case-based reasoning (CBR) which stores old problems and solution information as cases can 

solve new problems of the particle swarm optimization (PSO) with its long-term memory during the learning phase 
for multiple robots in an unknown environment. The PSO components which offer trainings to the robot in 
specially-designed simulation environments to deliver basic behaviors enhance their robustness and adaptivity. The 
CBR components which selects solution from the case base evolved for basic behaviors rank them according to 
their performance in the new complex enviroment and introduce them to a PSO algorithm’s initial population, 
hence speeding up the learning process. Behavior-based multi-robot formation control task is employed as a 
platform to assess the effectiveness of this approach with robot simulation software MissionLab. Simulation and 
experimental results show that the CBR-injected PSO algorithm can quickly obtain optimal control parameters and 
multi-robot formation performs better in unknown environment. 
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【摘要】以未知环境下多机器人学习为研究平台，因案例推理方法可存储以前的问题和解信息，用该方法的长期记忆特

性可帮助粒子群优化算法更好地解决新的问题。在特定的仿真环境里，粒子群优化算法可训练机器人的几个基本行为，经过
学习使机器人具有更好的鲁棒性和自适应学习能力。根据机器人不同行为在复杂环境下的性能指标，CBR可从案例库中选择
特定的行为，并将其参数传送到粒子群优化算法的初始解库，从而加速整体的学习过程。利用机器人仿真软件MissionLab，
采用基于行为的多机器人编队任务，用来测试该算法的有效性。仿真和实验结果表明，案例推理方法和粒子群优化算法相结
合，使机器人获得更优的控制参数，同时在未知环境下的多机器人编队具有更好的性能。 
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1  Introduction 

A multi-robot system consists of a group of robots, 

which are organized into a multi-agent architecture so 

as to collaboratively perform a common task. Over the 

past decade, multi-robot systems have get more and 

more attention in robot research field because of its 

special capabilities like cooperative behavior, 

robustness, parallel operation, and scalability[1-3]. 

Formation control is one of the most important 

research subjects in multi-robot systems. It applies to 

many areas such as geographical exploration, rescue 

operations, surveillance, mine sweeping, and 

transportation. A lot of approaches have been proposed 

recently, such as behavior-based control, LQ control, 

visual servoing control, Lyapunov-based control, input 

and output feedback linearization control, graph theory, 

and nonlinear control[4]. In this paper, a behavior-based 
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approach is adopted, which integrates the case-based 

reasoning (CBR) algorithm with particle swarm 

optimization (PSO) algorithm. 

Reactive control systems have removed the 

apparent defaults of the deliberative system. 

Behavior-based robot reacts to stimulation from the 

local states of the world. These behaviors are closely 

related to the effectors that implement the behaviors of 

the robot[5]. The subsumption architecture proposed by 

Ref. [6] and the motor schema-based architecture 

proposed by Ref. [7] are both classical architectures. In 

this paper, each robot is designed to be the motor 

schema-based architecture and multi-robot formation 

control is adopted as a task. The behavior-based 

reactive system requires the selection and structuring 

of the control parameters, which underlies the 

behaviors of the robot. Although simpler than 

modeling a complex and dynamic environment, 

selecting parameters controlling robot behaviors can be 

complicated. 

PSO is a a random and parallel search algorithm  

that searches from a population of points[8]. To date, 

PSO-based machine-learning system can only acquire 

optimized outcome which has been deprived of former 

experiences. This leads to its inability in improving 

their performance persistently[9]. However, a lot of 

application areas are more suitable for case-based 

storage of historical experience[10-11]. The CBR 

algorithm can offer solutions to many problems in 

knowledge engineering such as knowledge elicitation, 

encoding and maintenance, and it is often viewed as a 

low-risk way[12].  

This paper describes the application of combining 

CBR and PSO algorithms in solving the problem of 

optimizing control parameters of multi-robot formation 

navigation. The PSO algorithm provides an 

unsupervised learning method which greatly reduces 

the effort of the designer in configuring a navigation 

system. The CBR algorithm can save good parameters 

from PSO and inject appropriate cases into the initial 

population of the PSO algorithm, which not only 

speeds up convergence but  also provides higher 

quality solutions. Our approach is to train robots of 

behavior-based reactive control of multi-robot 

formation in various types of environments, thus 

creating a set of optimized cases (control parameters) 

which can be used in similar environments, including 

those that are not presented in the learning phase.   

2  Review of CBR and PSO algorithm 

2.1  Particle swarm optimization algorithm 

Ref. [13] first introduced PSO algorithm[13]. By 

adopting idea of swarms in the nature such as birds and 

fish, the PSO algorithm was proposed. PSO has 

particles driven from natural swarms with 

communications based on evolutionary computations. 

A taxonomy of the PSO algorithm was presented in 

Ref. [14] which classified the elements of the PSO 

algorithm into four main groups: variables, particles, 

swarm and process[15].  

The particles of PSO that show the solution 

candidates start their movement from stochastic 

positions in a search area. In each iteration, particles 

update their position according to:  
1prtpos prtpos prtveli i
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The particles shift from their current position to 

another in accordance with the above updating 

equation and their movement is influenced by a fitness 

function that evaluates the quality of each solution. As 

shown in Equ. (2), PSO has several dependent 

parameters. Factors c1 and c2 are capable of balancing 

the effect of self-knowledge and social knowledge 

when the particle moves toward the target, and they are 

usually set to 2, though good results have been also 

produced with c1 = c2 = 4[16]. r1 and r2 are random 

numbers varying from 0 to 1, at different iteration, 

and  is a constriction factor to limit the velocity[15]. 

  is used to regulate the global search behavior. 
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It can be set to a large value at the beginning of the 

searching process and it dramatically decreases 

through any predefined scheme during the 

optimization. It ranges from 0.2 to 0.4. Several benefits 

can be obtained from dynamic adjustment. Firstly, it 

facilitates the convergence to an optimal solution. 

Secondly, it controls the impact of previous part 

velocities on current velocities, which can adjust the 

tradeoff between the capability of swarms in local and 

global exploration. Fig. 1 illustrates a schematic view 

of how the position of a particle in two successive 

iterations is updated[15]. The detailed description of  

PSO can be found in Ref. [13]. 

swarm 
influence 

current motion 
influence 

particle swarm
influence 

1prtposi
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Fig. 1  depiction of a particle’s position update in PSO 

2.2  Case-based reasoning 

Ref. [17] gives a detailed description of the 

Learning CBR module. In this section, only a high 

level overview of the module is given. The overall 

structure of the CBR unit is similar to the non-learning 

case-based reasoning system[18].  

The following can be founded in Ref. [19]. The 

feature identification sub-module of CBR unit captures 

the sensor data and goal information. The spatial 

feature vector representing the relevant spatial 

characteristics of the environment and the temporal 

features vector representing relevant temporal 

characteristics can be computed. The purpose of these 

two vectors is to select a best matching case.  

Case selection can be completed in three steps. 

Initially, all the cases will be selected and weighted. 

Euclidean distances between their spatial feature 

vectors and environmental spatial feature vector will 

be computed. It defines spatial similarities of cases 

with the environment. Euclidean distances between 

their spatial feature vectors and environmental spatial 

feature vector will be computed, which defines spatial 

similarities of cases with the environment. The case 

which has the highest spatial similarity of the best 

spatially matching case changes into the best spatially 

matching case. But all the cases with a spatial 

similarity within certain limits from the similarity of 

the best spatially matching case are selected for the 

following phase selection procedure. The resultant is 

called a spatially matching case. At the second phase 

of selection, all the spatially matching cases are seeked 

and weighted. Euclidean distances between their 

temporal feature vectors and the environmental 

temporal feature vector are computed. It defines 

temporal similarities of cases with the environment. 

The case that has the highest temporal similarities is 

called the best temporally matching case. Then all the 

cases with a temporal similarity within certain limits 

from the similarity of the best temporally matching 

case are selected for the next stage selection process. 

At the final selection phase, a case from the set of 

spatially and temporally matching cases is selected 

randomly[19]. 

3  Behavior-based multi-robot forma-  
tion control 

There are two parts in designing a behavior- based 

reactive control architecture: structure and a set of 

control values. The tasks that the robot must 

accomplish determine the structure, which constraints 

the collection of behaviors that the robot can present. 

After the structure of the system was defined, the 

system was tuned by adjusting the parameters that 

control the behaviors[20].  

In this paper, five input vectors to characterize the 

environment around the robot in multi-robot formation 

are adopted, which discriminate among different 

environment configurations. Obstacle-density provides 

a measure of the occupied areas that impede navigation. 

Absolute-motion measures the activity of the system 

and relative-motion represents the change in motion 

activity. Space between robots denotes the distance 

between robots and motion-towards-goal specifies how 

much progress the system has actually made towards 

the goal. These input vectors are continually updated in 

accordance with the information received from the 
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sensors of robot[21].  

For achieving formation control, two primary 

aspects deserve our attention: how to control each 

robot to stay in formation and how to produce 

avoidance collision trajectory. Here several motor 

schemas, such as move_to_goal, keep_formation, 

avoid_static_ obstacle and avoid_robot, are adopted to 

realize the overall behavior for a robot to move to a 

designated location without clashing with obstacles, 

other robots and staying in formation. 

Eight output vectors representing the schema 

parameter values are used to adapt to the formation 

control module[21]. These parameters are as follows: 

obstacle_gain, obstacle_sphere, obstacle_safety_ 

margin, avoid_robot_gain, avoid_robot_sphere, avoid_ 

robot_min_range and move_to_goal_gain. These 

values are set periodically according to the new case 

which best matches the current environment. The new 

values remains unchanged until the following setting 

period. 

The gain parameters are the multiplicative 

weights of the corresponding schemas. Obstacle_ 

sphere controls the distance within which the robot 

reacts to obstacles with the avoid_static_obstacle 

schema. Obstacle_safety_margin controls the distance 

at which inter-robot collisions are assumed to occur. 

Avoid_robot_sphere controls  the distance beyond 

which other robots are not considered by avoid_robot 

schema. Avoid_robot_min_range controls the distance 

within which the repulsion from another robot is set a 

maximum value. Therefore, a case in a library is a set 

of values for the above parameters. 

4  Control parameters selection with  
CBR-injected PSO 

The following is based on Ref. [22]. In this paper, 

we define experience E with respect to behavior-based 

multi-robot formation control task T and performance 

measure P if its performance of T, as measured by P, 

improves with experience E. 

Using above notion, T is denoted as the task with 

solutions found in the search space which is defined by 

the set S. Casting our definition of the task in terms of 

search is provided to the PSO by objective function O 

corresponding to the task T, which maps candidate 

solutions to the set of real numbers. That is: 
:{ }O S R                (3) 

where R is the set of real numbers indicating the range 

of mapping from S to R. The PSO algorithm intends to 

maximize the fitness function which is an objective 

function that maps objective function values to the set 

of nonnegative real numbers R≥0 . Here F is a 

collection of maps from points in S to R≥0 : 
:{ }F S R 0≥              (4) 

CBR combined with PSO gets experience by 

adding novel cases (control parameters) from PSO. 

Performance can be tested by the time taken to solve 

task tP and by the quality to solve qP .  

When robot encounters new conditions, the CBR 

module searches for similar input vectors and their 

associated output vectors (control parameters). Note 

that CBR research has shown that setting up a problem 

similarity mechanism is important[23]. 

CBR modulePSO module

case base

case

preprocessor
solutinos 

while running 

periodically inject 

cases while running 

initial 
population

particle swarm
optimiztion 
algorithm 

 
Fig. 2  conceptual view of CBR-injected PSO 

Once similar cases (input vectors) are found, 

some solutions (control parameters) will flow into the 

initial population of the PSO, which are called case 

initialization. The rest of the population are initialized 

randomly so as to maintain diversity and the PSO 

searches from the entire combined population. Fig.2 

shows a conceptual figure of CBR combined with PSO. 

As the figure shows that while the PSO runs on a new 

input vectors of surrounding, nice individuals of the 

population are stored into the case base after 

preprocessor. Next, when work on a new input vectors 

of surrounding starts, appropriate cases are picked out 

from the case base and used to populate a small 

fraction of the initial population. In this paper, a case is 

a member of the population (a set of candidate control 
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parameters) together with ancillary information 

including its fitness and the timestep at which this case 

was generated[24]. During the PSO search, whenever 

the fitness of the best individual in the population 

increases, the new best individual is stored in the case 

base[22].  

After CBR combined with PSO runs, the CBR 

module periodically pours some solutions (control 

parameters) similar to the current best member of the 

PSO population into the current population in order to 

displace the worst counterparts. The PSO unit keeps 

searching with this combined population.  

5  Simulation and experiment 

Simulation were achieved by Georgia Tech’s 

robot simulation software MissionLab[25]. MissionLab 

runs on Unix machines (SunOS or Linux) by using the 

X11 graphical windows system, a powerful set of 

software tools for developing and testing behaviors for 

single or a group of robots. Code generated by 

MissionLab can directly control commercial robots. 

ATRV-Jr/Urban Robot (iRobot), AmigoBot/Pioneer 

AT/Pioneer 2DX (ActivMedia, Inc.), and 

Nomad-150/200 (Nomadic Technologies, Inc.) are 

among those robots which MissionLab has 

supported[23].  

The simulation environment is a 1 000 by 1 000 

meters two dimensional field in which various sizes of 

circular obstacles can be scattered. Each simulated 

robot is a separately running C program that interacts 

with the simulation environment via a Unix socket. 

The simulation displays the environment graphically 

and maintains world state information which transmits 

to the robot as requested. In the following simulation, 

diamond formation of four robots as a team is 

implemented by adopting the unit-center-referenced 

approach. The diamond formation as whole moves 

from strating point which begins inside a rectangle 

area to destination point goal. 

Simulation 1 is designed as follows. Four robots 

in diamond formation are commanded to travel 

between two points: point “begin” inside a rectangle 

square and point “goal”, which is 800 m apart. 

Obstacles are placed randomly so 3% of the total area 

is covered with obstacles 2 to 10 meters in diameter. 

Based on the CBR-injected PSO algorithm, the 

near-optimal behavior parameters of robots’ reactive 

control are obtained.  

At the beginning of run, the libraries of CBR do 

not contain any cases and are created as the robot 

proceeds with its mission. As a result, the performance 
tP  ( final time of all robots arriving destination for 

one trial) and qP  ( average length of all robots 

running for one trial) of the robots in training runs are 

poor, as shown in Fig.3 and Fig.4. The search for 

optimal parameterization has just started in these runs 

and thus the robot’s behavior is very noisy. In contrast, 

after about sixty training runs in this environment, the 

robot gradually learns more optimal parameterizations. 

To test the performance of CBR combined with 

the PSO algorithm, multi-robot formation in unknown 

enviroment taken into form after learning process. 

Simulation 2 is designed to verify it, where a more 

complexible unknown environment for robots, which 

has 15% of the total area covered with obstacles 1 to 

20m in diameter, is adopted by MissionLab. 

Simulation results show that the robots’ trajectory in 

the final run is far better that each robot can better 

adjust its combined direction of behaviors to arrive at 

destination while avoiding obstacles and collisions 

with other robots, and keeping in diamond formation 

as quickly as possible ( tP =1 436 ms, qP =917 m). 

As mentioned above, Missionlab is a flexible 

application that at run time a researcher may choose 

between a simulated run and a run on physical robots. 

The same behavioral control code is used both in 

simulation and controlling the robots. The 

experimental platform for the results reported here are 

Nomad 150 robots, which are three-wheeled 

holonomic robots epuipped with a separatedly 

steerable turret and 16 ultrasonic range sensors for 

hazard detection and are controlled by on-board laptop 

computers running Linux. They communicate over a 

wireless network supporting Unix Sockets via TCP/IP. 

Experiments were conducted in the Mobile Robot 

Laboratory to demonstrate formation performance on 

mobile robots and validate the quantitative results from 

simulation experiments. Experimental enviroment is a 
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test area of approximately 20 by 10 meters which is a 

smaller test area versus simulation enviroment. The 

robots formation were commanded to navigate from 

West to East across the room. Sixty runs were 

conducted for diamond formation by the unit-center- 

referenced approach. These robots estimate their 

position with their shaft encoders. In order to 

communicate with the formation’s unit-center, each 

robot broadcasts its position to the other over a 

wireless network. The performance tP  and qP  of 

Nomad 150 robots’ formation in the learning phase is 

analogous to the simulation results, as shown in Fig.5 

and Fig.6. After learning process is finished and more 

obstacles are added, Nomad 150 robots’ formation can 

obtain a nice performance ( tP =12.3 s, qP =23.6 m). 

This experiment tests and verifies the simulation 

result that the formation of robots with on-line learning 

capability including CBR and PSO demonstrates good 

flexibility and adaptivity in unkown environments, 

while effectively completing a formation task. 
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Fig. 3  final time tP of all robots arriving  

destination for one trial 
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   Fig. 4  average length qP of all robots running for one trial 
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Fig. 5  performance tP of Nomad 150 robots  

formation in experiment 
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Fig. 6  performance qP of Nomad 150 robots  

formation in experiment 

6  Conclusions 

In this paper, the PSO algorithm and CBR 

algorithm are combined to function as formation 

navigation for a team of robots. Four behaviors are 

presented and the parameters which control these 

behaviors are set autonomously with a CBR-injected 

PSO approach. The approach leads to a better 

performance of the robot in comparison to a 

non-adaptive system. After the combination of CBR 

combined and PSO, the process of library of CBR 

configuration becomes full-automatic through training. 

There is no need to set any configuration of behavioral 

parameters, such as creating an initial case-based 

reasoning library. The more missions are accomplished, 

the better the parameterization becomes, and the better 

robots’ performance we will get. 
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