电子科技大学学报(自然版)  2015, Vol. 44 Issue (3): 333-338
两状态LMS信道中LMS系统的近似中断性能研究    [PDF全文]
廖希, 赵旦峰, 王杨    
哈尔滨工程大学信息与通信工程学院 哈尔滨 150001
摘要:针对通用的两状态陆地移动卫星(LMS)信道模型中,每一状态的Loo分布包含无限范围内的积分且不存在闭合形式,导致性能估计难以实现的问题,基于两状态信道模型给出等增益合并分集LMS系统中断概率的闭式解。利用Taylor级数展开法将包络的概率密度函数(PDF)近似为Rice分布PDF的加权和,利用Beaulieu序列法推导独立信道随机变量和的累积分布函数和二阶矩,得出系统中断概率的闭式解。仿真结果表明,近似中断概率与理论值十分一致,具有精确性、灵活性、复杂度低的优点。
关键词信道模型     分集接收     等增益合并     陆地移动卫星系统     中断概率    
Approximate Outage Performance of LMS Systems over Two-State LMS Channel
LIAO Xi, ZHAO Dan-feng, WANG Yang    
College of Information and Communication Engineering, Harbin Engineering University Harbin 150001
Abstract: The Loo distribution includes an infinite-range integral and is unclosed-form within each state for versatile two-state land mobile satellite (LMS) channel model, which makes the performance estimation difficult. The closed-form expression of outage probability for equal gain combining diversity LMS systems is presented based on two-state channel model. Firstly, the envelope probability density function (PDF) for each state is approximated as a sum of weighted Rice's PDFs by using Taylor series expansion algorithm. At a second stage, the cumulative distribution function and second moment of the sum of independent channel random variables are derived by applying Beaulieu series method. Finally, the closed-form of outage performance is obtained. Simulation results show that the approximated outage probability not only agrees very well with exact results over two-state LMS channel model, but also has superiority in significant accuracy, flexibility, and moderate computational complexity.
Key words: channel model     diversity reception     equal gain combining     land mobile satellite systems     outage probability    

近年来,随着数字视频广播卫星服务手持设备(digital video broadcasting-satellite services to handhelds, DVB-SH)标准[1, 2, 3]的发展,不同的陆地移动卫星(LMS)信道统计模型成为研究热点,一个精确的统计模型能为LMS通信系统设计提供准确的信息。在提出的LMS信道中,常用Loo模型[4]来描述接收信号包络的概率密度函数(PDF)。文献[5]给出了3状态和两状态模型的衰落统计特性,表明两个模型均能可靠、有效地描述窄道LMS信道。文献[6]在多卫星传播系统的信道模型中,将每一状态内包络的PDF拟合到Loo分布,并基于动态高阶Markov模型研究了双卫星信道的相关性和空间信道自相关性。文献[7, 8]考虑信道传播参数的联合分布,在S波段研究通用两状态LMS信道模型的衰落统计特性。

以上提出的信道模型均假定接收信号包络是Rice多径衰落与lognormal阴影的结合,均不能获得PDF的闭合形式,从而很难分析估计通信链路的性能,如中断概率、平均误比特率和信道容量等。为了解决这个问题,常采用近似或替代对数正态分布的方法。文献[9]采用Nakagami分布代替Lognormal分布,提出Abdi模型,推导出的统计特性与Loo模型及实测数据拟合得很好。文献[10]基于广义KG分布的衰落信道模型研究了分集接收机的平均输出信噪比(SNR)和中断概率。文献[11]引入Weibull-gamma (WG)分布近似Loo模型,以闭合形式推导出PDF、累积分布(cumulative distribution function, CDF)、特征函数和$n$阶矩,估计了单个接收机的平均误比特率和中断概率。文献[12]采用Nakagami-逆高斯模型代替Nakagami-lognormal模型,推导出单用户系统的中断概率、平均误码率和不同自适应传输技术下的信道容量的闭合表达式。文献[13]在Lognormal阴影莱斯衰落信道上将PDF近似为Rice分布PDF的加权和,并研究了单个接收机LMS系统的近似中断性能。文献[14]基于Beauliea序列法研究了等增益合并(equal gain combining, EGC)接收机的近似中断性能。以上以闭合形式研究分析了LMS系统的性能,但均是针对单状态或传播参数固定的LMS信道模型,而在具有联合传播参数的通用两状态LMS信道下,中断概率的闭式解尚未被提出。

基于通用的两状态LMS信道模型,本文采用Taylor级数展开法给出每一状态内信号包络的近似PDF,并采用Beauliea法推导独立两状态LMS信道随机变量(RV)和的CDF和二阶矩;最后,在S波段的不同环境和不同仰角下详细研究单个接收机和EGC分集接收机的中断性能。

1 通用的两状态LMS信道模型

通用的两状态LMS信道模型能准确有效地代表不同场景的阴影条件,可作为DVB-SH系统标准分析的基础。该模型分别采用‘好状态’和‘坏状态’代表视距及轻阴影、重阴影及阻塞遮蔽,并由Markov链控制状态间的转移,且在新状态时由联合统计分布更新传播参数,即:

$\left\{ \begin{array}{l} f({M_A})~{\rm N}({\mu _1},{\sigma _1}),f({\sum _A}|{M_A})~{\rm N}({\mu _2},{\sigma _2})\\ {\mu _2} = {a_1}M_A^2 + {a_2}{M_A} + {a_3}\\ {\sigma _2} = {b_1}M_A^2 + {b_2}{M_A} + {b_3}\\ f({MP}){\rm N}({\mu _3},{\sigma _3}) \end{array} \right.$ (1)

式中,N(·)是高斯分布。当给定环境和卫星仰角时,系数${u_i},{\sigma _i},{a_i},{b_i}$[7]是唯一的。${M_A}$、${\sum _A}$分别为视距分量的均值和标准偏差;${MP}$为多径分量的平均功率,均以dB为单位。每一状态内包络$r$的PDF服从Loo分布,可表示为:

$\begin{array}{l} {f_R}(r) = \int_{{\rm{ }}0}^{{\rm{ }}\infty } {{f_{R|Z}}(r|z)} f(z){\rm{d}}z,r \ge 0 = \\ \begin{array}{*{20}{c}} {}&{} \end{array}\frac{r}{{{b_0}\sigma \sqrt {2\pi } }}\int_{{\rm{ }}0}^{{\rm{ }}\infty } {\frac{1}{z}} \exp \left[ { - \frac{{{r^2} + {z^2}}}{{2{b_0}}}} \right] \times \\ \begin{array}{*{20}{c}} {}&{} \end{array}\exp \left[ { - \frac{{{{(\ln z - u)}^2}}}{{2{\sigma ^2}}}} \right]{{\rm{I}}_0}\left( {\frac{{rz}}{{{b_0}}}} \right){d}z \end{array}$ (2)

式中,;${{\rm{I}}_0}( \cdot )$是第一类零阶修正的贝塞尔函数;$u = {M_A}/8.686$;$\sigma = {\sum _A}/8.686$。${f_R}(r)$的PDF包含无限范围内的积分,且不存在闭合表达形式,因此很难在该信道模型上分析LMS系统的性能。

2 LMS系统的近似中断性能 2.1 两状态LMS信道模型上独立的RVs的和

两状态LMS信道模型上,假设$R$是$M$个独立RV${R_i}(i = 1,2, \cdots ,M)$的和,即:

$R = {R_1} + {R_2} + \cdots + {R_M}$ (3)

式中,RV${R_i}$的PDF为${f_{{R_i}}}(r)$。考虑到${R_i}$具有很小的方差,且在均值附近波动,可采用Taylor级数展开法推导近似的PDF。在两状态LMS信道模型中,每一状态内${R_i}$的PDF可近似为:

$\begin{array}{l} {f_{{R_i}}}(r) = {E_Z}[{f_{{R_i}|Z}}(r|z)] \approx \frac{2}{3}{f_{{R_i}|Z}}(r|{z_1} = \mu _L^{(i)}) + \\ \begin{array}{*{20}{c}} {}&{} \end{array}{\rm{ }}\frac{1}{6}{f_{{R_i}|Z}}(r|{z_2} = \mu _L^{(i)} + \sqrt 3 \sigma _L^{(i)}) + \\ \begin{array}{*{20}{c}} {}&{} \end{array}{\rm{ }}\frac{1}{6}{f_{{R_i}|Z}}(r|{z_3} = \mu _L^{(i)} - \sqrt 3 \sigma _L^{(i)}) \end{array}$ (4)

式中,$u_L^{(i)}$、$\sigma _L^{(i)}$分别是lognormal阴影的均值和标准偏差,与参数${\mu _i}$、${\sigma _i}$的关系为$\mu _L^{(i)} = \exp ({u_i} + \sigma _i^2/2)$,$\sigma _L^{(i)} = (\exp (\sigma _i^2) - 1)\exp (2{\mu _i} + \sigma _i^2)$;${f_{{R_i}|Z}}(r|z)$服从Rice分布。式(4)表明,基于Taylor级数展开可将每一状态内的接收信号包络$r$的PDF近似为Rice分布PDF的加权和。

给定场景和稳定的传播参数,Samimi H基于Loo模型、Abdi模型和Fontan模型验证了该近似方法的精确性。假设传播参数由当前状态和环境类型决定,在S频段、中级树阴影、$40^\circ $卫星仰角场景下,验证该近似方法在通用的窄带两状态信道模型上的有效性,如图 1所示。

图 1 “好状态”与“坏状态”的PDF

图 1表明,PDF的近似值与精确值基本拟合。相比“好状态”和“坏状态”的近似误差略大,这是因为重阴影或阻塞使Lognormal分布在均值附近的集中程度降低导致Taylor级数展开法的精确性降低。相比式(2),式(4)采用加权和近似无限范围内的数值积分,有效地减少了计算复杂度,适用于数据量较大的场合。

结合式(4)并采用Beaulieu序列法,文献[16]中$R$的CDF可表示为:

(5)

其中,

$\left\{ {\begin{array}{*{20}{c}} {{A_n} = \prod\limits_{i = 1}^M {{A_{{\rm{in}}}}} }\\ {{\theta _n} = \sum\limits_{i = 1}^M {{\theta _{{\rm{in}}}}} } \end{array}} \right.$ (6)
$\left\{ \begin{array}{l} {A_{{\rm{in}}}} = \sqrt {({E^2}\left\{ {\cos (nw{R_i})} \right\} + {E^2}\left\{ {\sin (nw{R_i})} \right\})} \\ {\theta _{{\rm{in}}}} = {\tan ^{ - 1}}\left( {\frac{{E[\cos (nw({R_i} - {\varepsilon _i}))]}}{{E[\sin (nw({R_i} - {\varepsilon _i}))]}}} \right) \end{array} \right.$ (7)

式中,$\varepsilon = r/M$;$w = 2\pi /T$,$T$为方波周期。同相分量的期望$E[\cos (nw{R_i})]$可表示为:

$E[\cos (nw{R_i})] = \int_{{\rm{ }}0}^{{\rm{ }}\infty } {\cos (nwr)} {f_{{R_i}}}(r){d}r$ (8)

代入式(4),式(8)可近似为:

$\begin{array}{c} E[\cos (nw{R_i})] \approx \\ \frac{2}{3}\int_{{\rm{ }}0}^{{\rm{ }}\infty } {\cos (nwr){f_{{R_i}|Z}}(r|{z_1} = \mu _L^{(i)}){d}r} + \\ \frac{1}{6}\int_{{\rm{ }}0}^{{\rm{ }}\infty } {\cos (nwr){f_{{R_i}|Z}}(r|{z_2} = \mu _L^{(i)} + \sqrt 3 \mu _L^{(i)}){d}r} + \\ \frac{1}{6}\int_{{\rm{ }}0}^{{\rm{ }}\infty } {\cos (nwr){f_{{R_i}|Z}}(r|{z_3} = \mu _L^{(i)} - \sqrt 3 \mu _L^{(i)}){d}r} \end{array}$ (9)

采用Taylor级数将I0(·)在零点展开,并结合合流超线几何函数1F1(·),式(9)在无限范围内的积分可近似为:

$\begin{array}{c} E[\cos (nw{R_i})] \approx \frac{2}{3}H({K_1},{\Omega _1}) + \\ \frac{1}{6}H({K_2},{\Omega _2}) + \frac{1}{6}H({K_3},{\Omega _3}) \end{array}$ (10)

同理,正交分量的期望$E[\sin (nw{R_i})]$可近似为:

$\begin{array}{c} E[\sin (nw{R_i})] \approx \frac{2}{3}G({K_1},{\Omega _1}) + \\ \frac{1}{6}G({K_2},{\Omega _2}) + \frac{1}{6}G({K_3},{\Omega _3}) \end{array}$ (11)

参数${K_j} = z_j^2/(2{b_0})$和${\Omega _j} = z_j^2 + 2{b_0}$($j = 1,2,3$)分别表示莱斯因子和总功率,且$H(K,\Omega )$和$G(K,\Omega )$可表示为:

$H(K,\Omega ) = \exp ( - K)\sum\limits_{k = 0}^\infty {\frac{{{K^k}}}{{k!}}} {}_1{{\rm{F}}_1}\left( {k + 1,\frac{1}{2}, - \frac{{{n^2}{w^2}\Omega }}{{4(1 + K)}}} \right)$ (12)
$\begin{array}{l} G(K,\Omega ) = \frac{{nw{{\exp }^{ - K}}}}{{\sqrt {\frac{{1 + K}}{\Omega }} }}\sum\limits_{k = 0}^\infty {\frac{{\Gamma (k + 3/2){K^k}}}{{{{(k!)}^2}}}} \times \\ \begin{array}{*{20}{c}} {}&{}&{}&{{}_1{{\rm{F}}_1}\left( {k + \frac{3}{2},\frac{3}{2}, - \frac{{{n^2}{w^2}\Omega }}{{4(1 + K)}}} \right)} \end{array} \end{array}$ (13)

式中,Γ(·)是伽马函数。将式(10)和式(11)代入式(7)得到${A_{{\rm{in}}}}$和${\theta _{{\rm{in}}}}$,从而得到Beaulieu序列的参数${A_n}$和${\theta _n}$,带入式(5)即可得到$R$的CDF的闭式解。

基于式(4),第$R$个独立RV${R_i},i = 1,2, \cdots ,M$的$n$阶矩可表示为:

$\begin{array}{c} E[R_i^n] = \int_{{\rm{ }}0}^{{\rm{ }}\infty } {R_i^n{f_{{R_i}}}(r){d}r} \approx \\ \frac{2}{3}\int_{{\rm{ }}0}^{{\rm{ }}\infty } {R_i^n{f_{{R_i}|Z}}(r|{z_1} = \mu _L^{(i)}){d}r} + \\ \frac{1}{6}\int_{{\rm{ }}0}^{{\rm{ }}\infty } {R_i^n{f_{{R_i}|Z}}(r|{z_2} = \mu _L^{(i)} + \sqrt 3 \sigma _L^{(i)}){d}r} + \\ \frac{1}{6}\int_{{\rm{ }}0}^{{\rm{ }}\infty } {R_i^n{f_{{R_i}|Z}}(r|{z_3} = \mu _L^{(i)} - \sqrt 3 \sigma _L^{(i)}){d}r} \end{array}$ (14)

式中,

$\begin{array}{c} E[R_i^n|Z = z] = \int_{{\rm{ }}0}^{{\rm{ }}\infty } {R_i^n{f_{{R_i}|Z}}(r|Z = z){d}r} = \\ {(2{b_0})^{\frac{n}{2}}}\Gamma \left( {1 + \frac{n}{2}} \right){}_1{{\rm{F}}_1}\left( { - \frac{n}{2},1, - \frac{{{z^2}}}{{2{b_0}}}} \right) = \\ {\left( {\frac{\Omega }{{1 + K}}} \right)^{\frac{n}{2}}}\Gamma \left( {1 + \frac{n}{2}} \right){}_1{{\rm{F}}_1}\left( { - \frac{n}{2},1, - K} \right) \end{array}$ (15)

结合式(15),推导出$n$阶矩的闭合表达形式,如下所示:

$\begin{array}{c} E[R_i^n] \approx \Gamma \left( {1 + \frac{n}{2}} \right)\left\{ {\frac{2}{3}\left( {\frac{{{\Omega _1}}}{{1 + {K_1}}}} \right){}_1{{\rm{F}}_1}\left( { - \frac{n}{2},1, - {K_1}} \right)} \right. + \\ \frac{1}{6}\left( {\frac{{{\Omega _2}}}{{1 + {K_2}}}} \right){}_1{{\rm{F}}_1}\left( { - \frac{n}{2},1, - {K_2}} \right) + \\ \left. {\frac{1}{6}\left( {\frac{{{\Omega _3}}}{{1 + {K_3}}}} \right){}_1{{\rm{F}}_1}\left( { - \frac{n}{2},1, - {K_3}} \right)} \right\} \end{array}$ (16)

在EGC分集的LMS系统中,根据式(16),$n = 2$可得第$i$个RV${R_i},i = 1,2, \cdots ,M$的二阶矩$E[R_i^2]$。

2.2 LMS系统的近似中断性能

在LMS系统中,为了实现可靠通信,经历多径衰落和阴影衰落的接收信号强度必须大于给定的门限。中断概率是衡量可靠性的重要指标,即SNR小于给定门限的概率。在通用的两状态窄带LMS传播信道上,将2.1节推导的近似结果应用于中断性能研究中。LMS系统的接收机采用EGC分集技术(即接收信号等增益,同相相加)获得分集增益。

考虑$M$个分集支路,在第$i$个分支天线上接收到的等效基带信号为${S_i} = s{R_i}\exp (j{\alpha _i}) + {n_i}$。其中,$s$为发射符号,每个符号传输的能量为${E_s} = E[{\left| s \right|^2}]$;${\alpha _i}$是信道的瞬时相位;${n_i}$是零均值加性高斯白噪声,且假设所有分集支路的单边带功率谱密度均为${N_0}$。EGC接收机输出的信号为:

${S_o} = \sum\limits_{i = 1}^M {{g_i}} [s{R_i}\exp (j{\alpha _i}) + {n_i}]$ (17)

式中,${g_i} = \exp ( - j{\alpha _i}),i = 1,2, \cdots ,M$为第$i$个接收机的增益。EGC接收机输出的每个符号的瞬时SNR为:

${\gamma _{{EGC}}} = {({R_1} + {R_2} + \cdots + {R_M})^2}\frac{{{E_s}}}{{M{N_0}}} = {R^2}\frac{{{E_s}}}{{M{N_0}}}$ (18)

输出的瞬时SNR${\gamma _{{EGC}}}$低于给定门限${\gamma _{{th}}}$的概率即为中断概率${P_{{out}}}$,代入式(18),${P_{{out}}}$可以表示为:

$\begin{array}{c} {P_{{out}}} = \Pr ({\gamma _{{EGC}}} \le {\gamma _{{th}}}) = P\left( {{R^2}\frac{{{E_s}}}{{M{N_0}}} \le {\gamma _{{\rm{th}}}}} \right) = \\ {F_R}\left( {\sqrt {\frac{{{\gamma _{{\rm{th}}}}M{N_0}}}{{{E_s}}}} } \right) \end{array}$ (19)

式(19)表明中断概率是独立两状态信道衰落RV和的CDF。第$i$个分集支路输出的平均SNR为,归一化中断门限为,$R$的二阶矩为,式(19)近似为:

$\begin{array}{l} {P_{{out}}} = {F_R}\left( {\sqrt {E[{R^2}]\left( {{M^2}\frac{{{\gamma _{{\rm{th}}}}}}{{\sum\limits_{i = 1}^M {{{\bar \gamma }_i}} }}} \right)} } \right) = \\ {\rm{ }}{F_R}\left( {\sqrt {\sum\limits_{i = 1}^M {E[R_i^2]} \left( {{M^2}\frac{{{\gamma _{{\rm{th}}}}}}{{\sum\limits_{i = 1}^M {{{\bar \gamma }_i}} }}} \right)} } \right) \end{array}$ (20)

式(20)表明,采用Beaulieu序列法将每一状态内Loo分布的近似PDF应用到EGC分集系统中,可推导出${P_{{out}}}$的闭式解,有效地降低了数值积分的复杂度。若${R_i}$是独立同分布的,则$E[{R^2}] = E[R_i^2]$。假设$M = 1$,式(20)也适用于单个接收机,是归一化中断门限的函数。

3 仿真分析

在S频段,不同环境及不同卫星仰角下,基于两状态LMS传播信道研究系统的近似中断性能。仿真参数设置为:快衰落采样间隔为八分之一波长,巴特沃斯低通滤波器的通带和阻带的归一化截止频率分别为0.225和0.75,慢衰落相关距离${l_{{corr}}} = 2{\rm{ m}}$,最小状态持续时间(帧长5 m)。通过50 000个采样点,20次统计平均后得到${P_{{out}}}$。

3.1 单个接收机系统的近似中断性能研究

在城郊环境的不同仰角下,单个接收机的${P_{{out}}}$如图 2所示。结果表明:近似${P_{{out}}}$与精确值的偏差随卫星仰角的增加而减少,如卫星仰角40°时近似均方误差约为$5.817{\rm{ }}4 \times {10^{ - 6}}$。该近似方法适用于在高卫星仰角下单个接收机LMS系统的中断性能研究。

图 2 单个接收机的${P_{{out}}}$

图 3给出了近似${P_{{out}}}$和归一化中断门限的变化关系。结果表明,城郊环境下,低仰角处${P_{{out}}}$较大。此外,${P_{{out}}}$随阴影程度的降低而改善,其中,城郊最好、其次是中级树阴影,而城市和重阴影环境最差。

图 3 不同环境及不同仰角下,单接收机的近似${P_{{out}}}$
3.2 EGC分集LMS系统的近似中断性能研究

LMS系统的接收机采用6个分集支路的EGC技术。由式(1)确定的传播参数将导致随机变量${R_i},i = 1,2, \cdots ,M$是独立不同分布的,即式(20)由归一化中断门限和${R_i}$的二阶矩向量决定。LMS系统的${P_{{out}}}$如图 4所示。相比图 2,40°仰角的近似均方误差约为$2 \times {10^{ - 3}}$,而99.9%可靠性时分集增益达到22 dB,即性能的改善是以牺牲近似性能为代价的。

图 4 城郊环境,不同仰角下EGC分集的${P_{{out}}}$

图 5给出了不同环境及不同仰角下,LMS系统的近似${P_{{out}}}$。结果表明,EGC分集接收使中断性能在重阴影环境及低仰角下改善程度较大。相比图 3,归一化中断门限在0处,改善两个数量级。同时,LMS系统的性能随着阴影程度的降低而提高。

图 5 EGC分集系统的近似${P_{{out}}}$

在中级树阴影环境,卫星仰角60°下的两状态LMS信道上,图 6给出不同M的近似中断概率。从图 6中提取出近似均方误差、99%信号可靠性所需的中断门限及分集增益,如表 1所示。结果表明,随分集支数的增加近似性能减弱,但给定信号可靠性时所需门限降低,且分集增益提高。

图 6 EGC分集的LMS系统的近似${P_{{out}}}$

表1 不同分集支路的系统性能
4 结 论

本文针对通用的两状态LMS信道模型的每一状态内Loo分布的PDF存在无限范围积分导致LMS系统中断性能不存在闭合表达形式的问题,基于Taylor级数展开法将每一状态内Loo分布PDF近似为Rice分布PDF的加权和,并采用Beaulieu序列法在两状态LMS信道模型下推导EGC分集的LMS系统的近似中断概率。仿真结果表明:近似PDF与精确PDF拟合地较好,且在不同环境和不同仰角下,单个接收机和EGC分集接收机系统的中断性能随卫星仰角的增加及阴影程度的降低而改善。同时,随着分集数的增加,近似中断性能明显改善;此外,此闭合解具有精确性、灵活性、复杂度低的优点。本文在通用两状态LMS信道下对中断概率的近似也可扩展到MIMO LMS通信中,得出闭合、数值易分析的性能表达式。

参考文献
[1] POLAK L,KRATOCHVIL T. DVB-SH-A transmission in Gaussian and mobile fading channels[C]//Proceedings of the ELMAR. Zadar,YUG: IEEE,2011: 265-268.
[2] ALAMANAC A B,BURZIGOTTI P,COHEN M,et al. Performance validation of the DVB-SH standard for satellite/terrestrial hybrid mobile broadcasting networks[J]. IEEE Transactions on Broadcasting,2011,57(4): 802-825.
[3] HUTTL O,KRATOCHVIL T. Comparison of channel coding used in DVB-T/H and DVB-SH standard of digital television broadcasting[C]//21st International Conference on Radioelektronika. Brno,Czech Republic: IEEE,2011: 1-4.
[4] LOO C. A statistical model for a land mobile satellite link[J]. IEEE Transactions on Vehicular Technology,1985,34(3): 122-127.
[5] BURZIGOTTI P,CERDEIRA R P,ALAMANAC A B,et al. DVB-SH analysis using a multi-state land mobile satellite channel model[C]//4th Advanced Satellite Mobile Systems. Bologna,Italy: IEEE,2008: 149-155.
[6] MILOJEVIC M,HAARDT M,EBERLEIN E,et al. Channel modeling for multiple satellite broadcasting systems[J]. IEEE Transactions on Broadcasting,2009,55(4): 705-718.
[7] CERDEIRA R P,FONTAN F P,BURZIGOTTIP,et al. Versatile two-state land mobile satellite channel model with first application to DVB-SH analysis[J]. International Journal of Satellite Communications and Networking,2010,28(5-6): 291-315.
[8] ARNDT D,HEYN T,KONIG J,et al. Extended two-state narrowband LMS propagation model for S-band[C]//Proceedings of IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Seoul,Korea: IEEE,2012: 1-6.
[9] ABDI A,LAU W C,ALOUINI M S,et al. A new simple model for land mobile satellite channels: First-and second-order statistics[J]. IEEE Transactions on Wireless Communications,2003,2(3): 519-528.
[10] BITHAS P S,MATHIOPOULOS P T,KOTSOPOULOS S A. Diversity reception over generalized-K (KG) fading channels[J]. IEEE Transactions on Wireless Communications,2007,6(12): 4238-4243.
[11] BITHAS P S. Weibull-gamma composite distribution: alternative multipath/shadowing fading model[J]. Electronics Letters,2009,45(14): 749-751.
[12] LAOURINE A,ALOUINI M S,AFFES S,et al. On the performance analysis of composite multipath/ shadowing channels using the G-distribution[J]. IEEE Transactions on Communications,2009,57(4): 1162-1170.
[13] SAMIMI H. Approximate outage analysis of land mobile satellite systems in lognormally shadowed rician channels[J]. Wireless Personal Communications,2011,61(2): 477-490.
[14] SAMIMI H. Performance analysis of land mobile satellite communication systems with equal-gain combining over shadowed-rice fading channels[J]. Wireless Personal Communications,2012,63(3): 645-654.
[15] FONTAN F P,CASTRO M A V,BUONOMO S,et al. S-band LMS propagation channel behavior for different environments,degrees of shadowing and elevation angles[J]. IEEE Transactions on Broadcasting,1998,44(1): 40-76.
[16] BEAULIEU N C. An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables[J]. IEEE Transactions on Communications,1990,38(9): 1463-1474.
[17] MHEARAIN F N,SELLATHURAI M,FONTAN F P. An enhanced statistical model for the dual polarized MIMO land mobile satellite channel[C]//8th European Conference on Antennas and Propagation (EuCAP). Hague,Netherland: IEEE,2014: 3031-3035.
[18] LIOLIS K P,VILARDEBO J G,CASINI E,et al. Statistical modeling of dual-polarized MIMO land mobile satellite channels[J]. IEEE Transactions on Communications,2010,58(11): 3077-3083.