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On the Charging Effects of Dust Particles in Polar Mesosphere
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Abstract By using the orbit-limited motion (OLM) method and the charging theory of dust particles, the
charging effects of dust particles during the condition when dusty plasmas in mesosphere affected by high power
radio wave are analyzed in this paper. In addition, the theoretical results are demonstrated by simulated
experiments. Through theoretical analysis, it can be known that the number ofcharge dust particles is determined by
the size of the dust radius, electron temperature, ion temperature, ion density and electron density. Based on the
data of rocket-borne sensors and simulation results, it is found that the average number of charged dust decreases
with an increase in dust charges number density and increases with an increase in dust radius, electron temperature,
and electron density. The simulation results are close to the theoretical and experimental studied results, and the
average radius are consistent with the results of reference when the average dust charge is 0.4e.
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Polar mesosphere summer echoes (PMSEs) are
strong radar echoes produced at polar latitude during
the summer. This phenomenon is the first time
observed with 50 MHz MST radar at Poker Flat,
Alaska'!. The occurrence altitude of PMSE is about
80~90 km, and the strongest echo is usually observed
at about 85 km. Since its first observation at 50 MHz,

PMSE have been observed at a variety of frequencies
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between 2.78 and 1290 MHz. Many scientists of space
and dusty plasma physics diverted their attentions to
these interesting radar phenomena and achieved a lot
of diagnostic information'.

It is now well understood that charged ice
particles play a crucial role in the charge balance of the
polar summer mesosphere region where ice particles

become negatively charged due to electron attachment
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and hence effectively scavenge electrons”™”. This
process results in electron density depletions or the so-
called electron ‘bite-outs’"'”. Fluctuations in electron
density are generally anti-correlated to the negative
dust charge density, however, in certain regions, it is
also positively correlated"”. Recently, in the Earth
ionosphere the effect of charged dust particles on radar
observations was discussed"”. Also, a new method for
the analysis of the measurements of mesospheric dust
was presented!”. The occurrence of ‘bite-outs > is
hence considered as strong support for the existence of
mesospheric ice particles. So far, electron ‘bite-outs’ in
the vicinity of PMSE have routinely been observed
with  the (0141605

17-18]

occasionally with ground-based radars'”"*,

rocket-borne  sensors well as

Study of dusty plasma is important for a number
of applications in laboratory plasmas and modern
plasma technologies, as well as in space plasmas and

19291 Scattering of

plasma of the Earth’s environment'
electromagnetic waves in plasma is a powerful
diagnostic method that has been successfully used in
the laboratory and ongoing geophysical experiments®' >,

Rocket experiments have been used to detect
PMSE. In the rocket experiments, there is equipped
with a dust probe (DUSTY) for measuring dust current
and an electron probe (CONE) for measuring neutral
atmospheric parameters and electron currents. When
the rocket moves through the mesopause, the charged
dust particles and electrons collide with the DUSTY
and CONE probe respectively and generate current.
Then the dust current and electron current were

In addition, the temperature of the
13,26-27

recorded.
mesosphere can be measured****”. However, in these
experiments the radius and charge of dust particles are
not measured accurately. But it is suggested that the
dust charge number can be obtained by the charging
process of electron and ion to dust particles. Later,
PMSE heating experiments also detect the dust
particles in the polar mesosphere, however, we still
lack numerical simulation about the charged dust
particles causing PMSE"**”. So, it is necessary to
analyze the size of dust particles and estimate the
electric charge by theory and simulation.

In this paper, using the orbit-limited motion

(OLM) method and the charging theory of dust
particles, the formula for dust charge is deduced in
dusty plasma. The experimental data of ECT-02 is
used to analyze the charge number of dust particle in
the PMSE dusty plasma region (80~90 km).

1 Theoretical Model

In the mesosphere, since photoelectron emission
is negligible, the charging process of electron and ion
to dust particles is only due to the collection of plasma
particles where the charge number on each dust
particles will be low (typically a few unit charges or
less) and negative. The OLM theory is one of the most
popular sphere-charging model™”. The OLM method is
based on the electron/ion Maxwell distribution to
decide the electron/ion current carried on dust
particles® ™. The OLM method and the charging
theory of dust particles in dusty plasma are used to
obtain the relation of dust particles radius and dust
charge number with different electron temperatures.
When the active experiments of PMSE are carried out,
the electron temperature will change greatly, and many
other parameters in PMSE dusty plasma layer will
have corresponding changes at different time scales.
To the best of our knowledge, the charging effects of
dust particles in polar has not been yet addressed
within the experimental framework"™"*",

By using the OLM method, the charging current
to the dust grain carried out by the plasma particles are

given as:

I. = — V8nrincevieexp (—eda/kp ) (M

I = V8nrimevy (1 —edq/kTi) (2)

where /. and [; represent the charging currents of
electron and ion, respectively; kg = 1.38x10723J.K"!
is Boltzmann constant; rq and ¢4 are the dust radius
and floating potential; n,, m,, and T, are the electron
density, mass and temperature, respectively; n;, m;, and
T; are ion density, mass and temperature, respectively;
vie = (kgTe/me)'/?  and vy = (kgTi/m)'/*  are the
electron and ion thermal velocities, respectively.

The dust grain surface becomes negatively

charged and [;<<[, (since m.,<<m;) when the number
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density of electron and ion have great differences.
However, in the case of electron ‘bite-outs’ condition
when the ion density is much larger than electron
density, the ion and electron currents have no
difference given as:

I.+1;=0 3)

When no external disturbance is present, like
electron-ion plasma, the dusty plasma is also
macroscopically neutral. It means that in equilibrium
with no external forces present, the net resulting
electric charge in dusty plasma is zero. Therefore, the
equilibrium charge neutrality condition in dusty
plasma can be written as:

gini —ene —qana =0 “)
where ng is the unperturbed number density of the
plasma species s (where s = ion or electron and
d=dust); ¢; and ¢4 are the charges of ion and dust,
respectively. It is already confirmed that the dust
particles in the mesosphere are mostly negatively
charged.

We assume that Zy = —4neyrqdq/e is the number
of charges residing on the dust grain surface. Here, &
is the permittivity of vacuum. At the same time, we
assume that the ion charge state Z=1 will be used in
the rest of the paper. So equation (4) changes into:

ni = ne +|Zq|ng (5)
By combining the obtained equations (1), (2), (3)
and (5), it can be obtained:

12
Time edq edd Zang
S 1- 22 exp[- 24 )= 1 -2 (6
(Temi) ( kBTi)eXp( kgTe nj ©

In the paper the unit of 74 is nm; T, and T; are the
temperatures of electron and ion, with unit K,
respectively. The mass of an electron is m=9.1x
107" kg and the mass of an ion is m;=4.98x107 kg
(where the main components are O,  and NO',
respectively). The charge of an electronis e=1.6x10"" C;
Zang 1s the dust charge number density.

Finally, the dust charge number is determined by
the size of the dust radius, electron temperature, ion
temperature, ion number density, and electron number

density.

2 Numerical Model Results

For the analysis of radius and charge number of
dust particles, the elementary parameters in the polar
mesosphere, such as the electron density, dust charge
number density, and temperature of dusty plasma are
required. It is well known that all the parameters in the
PMSE dusty plasma layer are affected due to active
heating experiments, and the electron temperature
shows the most obvious and immediate change with
different radar frequencies and incident power.
Therefore, the numerical model is built to analyze the
relation between the average dust charge and dust
charge number density. And the results of the
numerical model are compared with information
experiment results. The effect of dust radius on dust
charge number density is given in Fig. 1. From Fig. 1,
it is clear that the average dust charge decreases with
an increase in dust charge number density. At the same
time the average dust charge increases with an increase

in dust radius.
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dust charge number densities/m™

Fig. 1 Dependence of average dust charge on dust charge
number density with different values of dust radius

Fig. 2 shows that the dependence of average dust
charge on dust charge number density for different
electron temperatures. It is clear that the average dust
charge decreases with an increase in dust charge
number density, and it increases with an increase in
electron temperatures.

Fig. 3 gives the dependence of average dust
charge on dust charge number density for different
electron densities. It is clear that the average dust

charge decreases with an increase in dust charge
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number density and increases with an increase in
electron density. In addition, the decreasing tendency
of average dust charge with an increase in dust charge
number density is more and more slowly when the

electron number density is larger.
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Fig. 2 As Fig. 1, but for electron temperature
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Fig.3 As Fig. 1, but for electron number density

3 Experiment Results

To study the PMSE, an international campaign
ECHO-94 was conducted at Andeya Rocket Range
(ARR; 69°N, 16°E), Norway, during the period July
25 to August 12, 1994. During the campaign, the
EISCAT VHF (224 MHz) radar outside Tromsg,
Norway, and the ALOMAR SOUSY (50 MHz) radar
located at ARR were used to detect PMSE. The first
salvo (salvo 1; July 28-29, 1994) during ECHO was
launched in the presence of strong PMSE detected by
both radars. The results were named as ECT-02. The
newer data are too difficult to gain because the data are
not open source. However, the older data and the

interpretation of them described in the paper are

relevant for the interpretation and planning now
underway. By analyzing the experiment of ECT-02,
the atmospheric parameters such as neutral particles
density, electron density, dust charge density, ion
density, and temperature, were obtained. The range of
height is 82~90 km. Two obvious electron ‘bite-outs’
regions at height 85.5 and 87.5 km are shown in the
Ref. [S]. Special attention is required at altitude range
from 85.4 to 86 km. Here, the electron number density
is too low to be detected by the Langmuir probe in the
rocket. For convenient analysis, electron number
densities in these heights were replaced by typical
minimum values 1x10° m™ observed by the EISCAT
UHF radar.

Fig. 4 shows the profile of average dust radius
changing with average dust charge and altitude. It is
clear that the radiuses show great differences in the
region with electron ‘bite-outs’ and without electron
‘bite-outs’. When the dust particles have one negative
charge Z4=1 and no electron ‘bite-outs’, the radius of
dust particles are no more than 40 nm which is larger
than that given in Ref. [37].
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Fig. 4 Profile of average dust radius changing with average
dust charge and altitude

To investigate the relation between average dust
radius and average dust charges, we pay more attention
to analyze the height from 87 km to 88 km with
obvious electron ‘bite-outs . Note that we do not

>

analyze another electron ‘bite-outs * region from
85.4 km to 86 km for avoiding the uncertain effect of
electron density. The average radius from 87 km to

88 km are given in Fig. 5. The dust charges are
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assumed as 0.3e, 0.4e, and 0.5¢ corresponding to black
dotted, blue solid, and red dot lines, respectively. From
Fig. 5, it is found that the dust radius increases when
the average dust charge increases. Besides, the largest
dust radius occurs at 87.5~87.6 km regardless of how
many charges are charged to the dust, and the tends of
dust radius changing with charged dust at different
altitude are the same. Ref. [28] shows that it is at
variance with current theories of the charging of
particles when assuming a fixed dust particle radius is
10 nm. In fact, our results clearly show that dust
particle radius can be significantly larger than 10 nm,
much larger even than 50 nm if the dust has large
enough charges. To a certain extent, the average radius
agrees with that given in Ref. [37] when the average

dust charge is 0.4e.
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Fig. 5 Altitude profile of average dust radius changing with
average dust charges

4 Conclusions

In this paper, the formula for the dust charge
number is deduced during heated PMSE condition. A
simple but very useful method for the analysis of the
dust charge number and the radius of dust particles in
the polar summer mesosphere has been introduced.
Dust charge number increases with an increase in dust
radius, electron density, and electron temperature. In
addition, the dust charge number decreases with an
increase in dust charge number density. The simulation
results are close to the current model results. Certainly,

we can yield an indication of more benefits to be

gained from a persistent approach to the extraction if

we have new data as much as possible.
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