基于深度图卷积网络的社交机器人识别方法

Social Bot Identify Method Based on Deep Graph Convolutional Network

  • 摘要: 提出了一种基于深度图卷积神经网络的社交机器人识别方法。首先,在元数据特征的基础上,引入RoBERTa模型进行博文情绪分类,进一步提取更能区分社交机器人和普通人的情绪多样性特征;同时采用single-pass进行博文聚类,构造博文相似图;在此基础上,提出了在GCNII模型上增加Attention机制的A-GCNII模型,通过捕捉用户元数据特征和社交网络中同一话题下的用户关系结构特征识别社交机器人。在真实新浪微博数据集上进行对比实验的结果表明,该方法在识别准确性和效果上均表现良好。

     

    Abstract: This paper presents a method of social robot recognition. This method extracts the characteristics of account sentiment diversity and uses the RoBERTa (robustly optimized BERT pretraining approach) model to classify the sentiment of blog posts. At the same time, the single-pass method is used to cluster blog posts and construct blog similarity graph. On this basis, attention-GCNII (A-GCNII) model, which adds Attention mechanism on the basis of graph convolutional network via initial residual and identity mapping (GCNII) model, is proposed to identify social robots by capturing user metadata features and user relationship structure features under the same topic in social networks. The results of comparative experiments on real Sina Weibo datasets show that our proposed method performs well in recognition accuracy and recognition effect.

     

/

返回文章
返回