基于VMD和TCN的多尺度短期电力负荷预测

Multi-Scale Short-Term Load Forecasting Based on VMD and TCN

  • 摘要: 准确的电力负荷预测对于保证电力系统的稳定运行起着重要作用。针对传统短期电力负荷预测方法预测精度低,模态分解后未考虑子序列融合等问题,提出一种基于变分模态分解(VMD)和时域卷积网络(TCN)的多尺度短期电力负荷预测方法。首先利用VMD将电力负荷数据分解为若干个子序列,解决电力负荷数据的非线性和随机性等问题;再利用TCN对若干个序列采用不同时间尺度进行训练;最后利用全连接网络(FC)对各时间尺度的子序列进行融合,实现短期电力负荷预测,提升预测精度。实验结果表明,该方法相较于VMD和改进的长短时记忆网络(LSTM)相结合的传统预测方法,其均方根误差下降40%,曲线拟合程度提升1.1%。

     

    Abstract: Accurate power load forecasting plays an important role in ensuring the stable operation of the power system. In view of the low precision of traditional short-term power load forecasting methods, the sub-sequence fusion problem is not considered after modal decomposition, this paper proposes a multi-scale short-term power load forecasting based on variational mode decomposition (VMD) and temporal convolutional network (TCN) methods. First, VMD is used to decompose the power load data into several sub-components to solve the problems of non-linearity and randomness in the power load data, then TCN is applied to train several components with different time scales, finally a fully connected network is used to analyze each component. Time-scale decomposition signals are fused to realize short-term power load forecasting and improve forecasting accuracy. The experimental results show that the root mean square error (RMSE) is reduced by 40% and the curve fitting is improved by 1.1% compared with the traditional prediction method of VMD and improved long-short-term memory network.

     

/

返回文章
返回