基于扩散模型的心电信号去噪方法

Denoising Method of ECG Based on Diffusion Model

  • 摘要: 传统和深度学习的去噪技术在处理心电(Electrocardiogram, ECG)信号特定类型的噪声和数据泛化的验证方面存在不足。为此,提出一种基于扩散模型的生成式ECG去噪模型,该模型利用模拟数据学习干净ECG分布的得分函数,基于欧拉法求解常微分方程(ODE)生成和分离出ECG和噪声。该模型在模拟数据上进行了训练,并在独立的真实数据集上进行了验证。研究结果表明,与其他相关方法比较,该模型在去除多样性噪声以及保持ECG中不同振幅特征波形的一致性方面具有显著优势。

     

    Abstract: Traditional and deep learning denoising techniques exhibit shortcomings in handling specific types of noise and data generalization validation in Electrocardiogram (ECG) signals. This paper proposes a generative ECG denoising model based on diffusion models, which leverages simulated data to learn the score function of clean ECG distribution and generates and separates ECG and noise based on the Euler method for solving Ordinary Differential Equations (ODE). The model is trained on simulated data and validated on an independent real dataset. Compared to other relevant methods, the obtained results demonstrate that this model has significant advantages in removing diverse noise and maintaining consistency in ECG waveforms of different amplitude features.

     

/

返回文章
返回