未知环境中基于控制障碍函数的机器人安全控制研究综述

A review of research on robot safety control based on control barrier functions in unknown environments

  • 摘要: 随着机器人系统工作环境的复杂程度日益增加,以及对实时性需求的逐步提升,机器人的安全避障能力将面临新的挑战,控制障碍函数作为一种基于控制器的安全方法在机器人安全控制系统中迎来新的发展契机。调研分析了控制障碍函数及基于二次规划的优化控制器,总结了机器人在已知和未知环境中的避障问题,综述了高斯过程和强化学习两种理论合成控制障碍函数的策略。最后,讨论了未来基于控制障碍函数的空地协同机器人安全控制需要重点关注的问题,为未来控制障碍函数的理论研究和技术应用提供了参考。

     

    Abstract: As the complexity of robot system working environments continues to increase and the demand for real-time performance gradually escalates, the safety avoidance capability of robots is facing new challenges. Control barrier functions, as the safety method based on controllers, are getting new development opportunities in robot safety control systems. This paper investigates and analyzes control barrier functions and optimization controllers based on quadratic programming, summarizes the obstacle avoidance problems of robots in known and unknown environments, and provides an overview of strategies for synthesizing control barrier functions from the theories of Gaussian processes and reinforcement learning. Finally, it systematically discusses the key issues that need to be focused on in the future for safe control of ground collaborative robots based on control barrier functions, providing inspiration and references for future theoretical research and technical applications of control barrier functions.

     

/

返回文章
返回