Web舆情的长期趋势预测方法

高辉, 王沙沙, 傅彦

高辉, 王沙沙, 傅彦. Web舆情的长期趋势预测方法[J]. 电子科技大学学报, 2011, 40(3): 440-445. DOI: 10.3969/j.issn.1001-0548.2011.03.022
引用本文: 高辉, 王沙沙, 傅彦. Web舆情的长期趋势预测方法[J]. 电子科技大学学报, 2011, 40(3): 440-445. DOI: 10.3969/j.issn.1001-0548.2011.03.022
GAO Hui, WANG Sha-sha, FU Yan. Prediction Model for Long-Term Development Trend of Web Sentiment[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(3): 440-445. DOI: 10.3969/j.issn.1001-0548.2011.03.022
Citation: GAO Hui, WANG Sha-sha, FU Yan. Prediction Model for Long-Term Development Trend of Web Sentiment[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(3): 440-445. DOI: 10.3969/j.issn.1001-0548.2011.03.022

Web舆情的长期趋势预测方法

基金项目: 

国家高技术研究发展计划(2007AA01Z440);国家自然科学基金(60973069,90924011);四川省应用技术研究与开发项目支撑计划(2008GZ0009);中国博士后科学基金(20080431273)

详细信息
    作者简介:

    高辉(1969-)男,博士,副教授,主要从事方向复杂网络的并行数据挖掘、高效并行算法的设计与程序验证等方面的研究.

  • 中图分类号: TP311.13

Prediction Model for Long-Term Development Trend of Web Sentiment

  • 摘要: 针对传统预测方法无法有效预测Web舆情的长期趋势中拐点的不足,提出一种长期趋势预测方法。该方法首先通过周期分析和层次聚类为每类已发生舆情事件的发展趋势建立类模型库,然后通过对待预测舆情事件已知发展趋势进行自适应变换后,应用最小二乘法从相应的类模型库中选取均方误差和最小的模型来预测该事件的未来发展趋势。实验证明,与传统方法相比该方法在预测舆情事件发展的长期趋势时有较高的关联度,能有效预测长期趋势中的拐点。
    Abstract: In this paper we present a novel approach for long-term prediction of the development trend of Web sentiment. For each class of social events, the class model library of the development trend of Web sentiment is established by cycle analysis and hierarchical clustering. Then the adaptive transform is applied to the already known development trend of a new social event, and the min-sum of MSE from the library is selected to predict the future development trend of web sentiment. Experiments show that, compared with the traditional methods, the approach presented in this paper yields a higher correlation in predicting the long-term development trend of web sentiment, and can predict the turning points of the development trend more effectively.
计量
  • 文章访问数:  4537
  • HTML全文浏览量:  139
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-20
  • 修回日期:  2010-11-17
  • 刊出日期:  2011-06-14

目录

    /

    返回文章
    返回