堆叠稀疏降噪自编码的脑电信号识别

Recognition of EEG Based on Stacked Sparse Denoising Auto-Encoder

  • 摘要: 该文以深度学习中的自动编码机为基础,对原始输入向量加入噪声处理,隐含层加入稀疏限制,再将单一的网络结构堆叠成深层神经网络,提出改进算法——堆叠稀疏降噪自动编码机。通过在两个不同数据集(实验室采集数据集和2005年BCI竞赛数据集IVa)进行对比实验,结果表明该算法在运动想象脑电信号的特征提取上具有更强的学习能力和鲁棒性。

     

    Abstract: An improved algorithm, stacked sparse denoising auto-encoder (SSDAE), is proposed in this paper. In the new algorithm, the noise of original input data is processed, the hidden layers is limited to sparse restrictions, finally, EEG features are classified with the softmax. Experiments results on two different data sets (Laboratory data sets and 2005 BCI competition data set IVa) demonstrate that SSDAE had the highest recognition accuracy than traditional algorithms, which proves that SSDAE has the stronger learning ability and robustness in motor imagery EEG feature extraction.

     

/

返回文章
返回