Fuzzy映象的完全广义非线性隐拟变分包含

杨莉

杨莉. Fuzzy映象的完全广义非线性隐拟变分包含[J]. 电子科技大学学报, 2003, 32(6): 770-774.
引用本文: 杨莉. Fuzzy映象的完全广义非线性隐拟变分包含[J]. 电子科技大学学报, 2003, 32(6): 770-774.
Yang Li. Completely Generalized Nonlinear Implicit Quasi-Variational Inclusions for Fuzzy Mappings[J]. Journal of University of Electronic Science and Technology of China, 2003, 32(6): 770-774.
Citation: Yang Li. Completely Generalized Nonlinear Implicit Quasi-Variational Inclusions for Fuzzy Mappings[J]. Journal of University of Electronic Science and Technology of China, 2003, 32(6): 770-774.

Fuzzy映象的完全广义非线性隐拟变分包含

详细信息
    作者简介:

    杨莉 女 41岁 硕士 副教授 主要从事非线性分析方面的研究

  • 中图分类号: O177.91

Completely Generalized Nonlinear Implicit Quasi-Variational Inclusions for Fuzzy Mappings

  • 摘要: 通过建立q-一致光滑Banach空间中一类新的涉及Fuzzy映象及广义m-增生映象的完全广义非线性隐-拟变分包含,利用Nadler定理及广义m-增生映象的解算子技巧,构造了新的迭代算法。由该算法得到了q-一致光滑Banach空间中这类完全广义非线性隐-拟变分包含的近似解并证明了该解的存在性。建立了由算法产生的迭代序列,得到了它收敛到变分包含的精确解。
    Abstract: A new class of completely generalized nonlinear implicit quasi-variational inclusions involving generalized m-accretive mappings for fuzzy mappings in q -uniformly smooth Banach space are introduced and studied. By using the Nadler's theorem and the resolvent operator technique for generalized m-accretive mapping, some new iterative algorithms for finding the approximate solutions of this class of variational inclusions are constructed and the existence of solution for this kind of variational inclusion are proved. The iterative sequences generated by the algorithms converge to the exact solution of the quasi-variational inclusions.
计量
  • 文章访问数:  4488
  • HTML全文浏览量:  120
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-08-26
  • 刊出日期:  2003-12-14

目录

    /

    返回文章
    返回