结合混洗器的差分隐私矩阵分解推荐算法

Differential privacy matrix factorization recommendation algorithm combined with shuffler

  • 摘要: 推荐系统需要利用大量用户数据进行运算,存在用户隐私泄露风险。虽然差分隐私技术已被用于保护用户隐私,但在不可信服务器场景下,现有方法由于过多噪声注入会导致推荐效果下降。针对此问题,提出了一种结合混洗器的差分隐私矩阵分解推荐算法,利用混洗操作的隐私放大效应来减少噪声。在此基础上,通过对本地最大的k个梯度添加噪音来避免因数据稀疏性引起的推荐性能下降的问题,从而更好地优化了隐私保护与数据效用之间的平衡。理论与实验结果均验证了该算法不仅能有效提升隐私保护力度,而且能够产生良好的推荐效果,展现出良好的应用潜力。

     

    Abstract: Recommendation systems require extensive user data for computations, posing a risk to user privacy. While differential privacy techniques have been used to protect user privacy, in untrusted server scenarios, existing methods suffer from reduced recommendation effectiveness due to excessive noise injection. To address this issue, we propose a differential privacy matrix factorization recommendation algorithm that incorporates a shuffler to leverage the privacy amplification effect of shuffling operations for noise reduction. Additionally, we address the problem of recommendation performance degradation caused by data sparsity by adding noise to the top k gradients locally, thus achieving a better balance between privacy protection and data utility optimization. Theoretical and experimental results confirm that this algorithm not only effectively enhances privacy protection but also yields excellent recommendation results, demonstrating its promising application potential.

     

/

返回文章
返回