基于小波变换与状态空间模型的飞机轨迹预测

Aircraft trajectory prediction based on wavelet transform and state space model

  • 摘要: 飞机轨迹预测作为空战机动决策中的重要环节之一,在空中战场中有着举足轻重的作用。为实现更高精度与更长预测长度的飞机轨迹预测效果,提出了基于小波变换与状态空间模块的轨迹预测模型WTTr-M。该模型考虑轨迹频域特征,使用小波变换提取目标轨迹的时频特征进行学习。同时采用基于状态空间模块的预测模型进行预测,通过该模块实现对长序轨迹数据的选择性传播或忘记信息,进而加强模型对于更长轨迹预测的能力。实验通过自主生成的战场仿真轨迹数据与民航轨迹数据进行模型验证,实验结果证明了WTTr-M相较于其他方法在较长轨迹预测任务中可以取得更高的预测精度。

     

    Abstract: As one of the important links in air combat maneuver decision-making, military aircraft trajectory prediction plays an important role in the air battlefield. To achieve higher accuracy and longer prediction length of aircraft trajectory prediction, this paper proposes a trajectory prediction model WTTr-M based on wavelet transform and state space module. The model considers the frequency domain characteristics of the trajectory and uses wavelet transform to extract the time-frequency characteristics of the target trajectory for learning. At the same time, the model uses a prediction model based on the state space module to predict. Through this module, the long-order trajectory data can be selectively propagated or forgotten, thereby enhancing the model's ability to predict longer trajectories. The experiment is verified by the self-generated battlefield simulation trajectory data and civil aviation trajectory data. The experimental results show that WTTr-M can achieve higher prediction accuracy in longer trajectory prediction tasks than other methods.

     

/

返回文章
返回