数据驱动多层网络上传染病监测策略的效果评估

Evaluating infectious disease surveillance on data-driven multilayer networks

  • 摘要: 当前传染病监测策略的效果评估研究主要基于单层网络建模,未能充分考虑真实接触模式的多层性以及传染病的流行病学特征。据此,本文采用包含症前感染与无症状状态的机制模型刻画疾病状态转变,并用真实感染数据估计模型参数,开展了基于数据驱动多层网络上的传染病监测策略研究。从早期时滞、波峰时延、波峰比率三个维度评估不同监测策略的效果,同时提出了兼顾接触权重与流行病学特征的集体影响策略。结果表明,经典策略在数据驱动多层网络上仅能提前约3 天感知疫情,而考虑网络结构的策略可将感知时间提升至7天。相比之下,集体影响策略能提前约两周感知疫情,且该策略受监测子集规模影响较小,具有鲁棒性。

     

    Abstract: Current infectious disease surveillance studies often overlook the multi-layered nature of real-world contacts and disease characteristics. This paper presents a data-driven, multi-layer network approach that models disease transitions, including pre-symptomatic and asymptomatic states, using real infection data to estimate model parameters. We evaluate surveillance strategies based on early detection, peak delay, and peak ratio, and propose a collective influence strategy that considers contact weights and epidemiological features. Findings show that while traditional strategies can detect outbreaks about 3 days earlier, strategies accounting for network structure can advance this to 7 days, and the collective influence strategy can predict outbreaks up to two weeks in advance, demonstrating robustness to the size of the surveillance subset.

     

/

返回文章
返回