基于不确定性感知的多智能体主动式无线电地图估计

Uncertainty aware multi-agent active radio map estimation

  • 摘要: 无线电地图是掌握电磁环境态势的关键要素。针对多机协同监测与构建无线电地图的场景,提出一种基于不确定性感知的采样轨迹规划协同控制方法,涵盖地图估计、区域探索和邻域探索三大模块。首先,采用高斯过程回归对无线电地图进行周期性重构,通过后验分布方差表征不确定性,为轨迹规划提供量化依据。其次,利用维诺图动态分配探索窗口,并设计不确定区域的质心检测与评估方法,以引导智能体优先探索高不确定性子区域。最后,智能体抵达质心位置后,结合历史采样点的空间分布特征,设计基于贪心测量的搜索方法,以实现低采样密度空间的邻域优先采样。仿真实验结果表明,提出的算法能够在短时间内采集高质量的数据,并在地图探索时间以及地图估计精度等方面均得到提升。

     

    Abstract: Radio maps are a key element in understanding the electromagnetic environment. For scenarios involving multi-agent cooperative monitoring and constructing radio map, an uncertainty-aware sampling trajectory planning cooperative control method is proposed, encompassing three major modules: map estimation, region exploration, and neighborhood exploration. First, Gaussian process regression is employed to periodically reconstruct the radio map, with the posterior variance quantifying uncertainty to provide a basis for trajectory planning. Second, Voronoi diagrams are utilized to dynamically allocate exploration windows, and a centroid detection and evaluation method for uncertain regions is designed to guide agents in prioritizing the exploration of high-uncertainty subregions. Finally, upon reaching the centroid location, the agent employs a greedy measurement-based search method, incorporating the spatial distribution characteristics of historical sampling points, to prioritize sampling in low-density neighborhood spaces. Simulation results demonstrate that the proposed algorithm can collect high-quality data within a short time and achieves improvements in both map exploration time and estimation accuracy.

     

/

返回文章
返回