高灵敏和高特异性生物嗅觉传感系统研究

A Study of Olfactory Biosensing System High-Sensitive and Specific

  • 摘要: 利用微电极植入技术,提出了一种新型的生物嗅觉传感系统,将多通道植入式微电极包埋于大鼠嗅球中,提取出嗅球神经元的气味响应信息。通过分析神经元响应活动从而进行气味检测与区分,发现该系统能够长期稳定地用于气味检测,且灵敏度达到10-10 mol/L。在单分子气味或自然气味检测中,该系统都具有很高的特异性。因此,该系统在实际气味检测(如肺癌呼出气体标志物检测、食品新鲜度检测、爆炸物搜索等)领域具有广泛的应用前景。

     

    Abstract: Mammalian olfactory system can accurately identify odorants with high specificity and sensitivity. Taking advantage of multiple microelectrode implant technology, we developed a novel in vivo biosensing system for odor detection. The odorant information from conscious rats' olfactory bulb (OB) is extracted by using microelectrode array. High-quality mitral/tufted (M/T) cell activity evoked by odorants could be obtained for at least three weeks. The responses of M/T cell carry sufficient information to discriminate presented odorants. In addition, we found the concentration detection limit of rat is below 10-10 mol/L for carvone. These results demonstrate that in vivo biosensing system has the characteristics of high sensitivity, continuous recording, and specificity, which presents a promising platform for specific trace odorant detection in many fields.

     

/

返回文章
返回